Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T14:32:38.420Z Has data issue: false hasContentIssue false

New Nonvolatile Memory Effect Showing Reproducible Large Resistance Ratio Employing Nano-gap Gold Junction

Published online by Cambridge University Press:  01 February 2011

Yasuhisa Naitoh
Affiliation:
ys-naitou@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Nanotechnology Research Institute, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8562, Japan, +81-29-861-7892, +81-29-861-2786
Masayo Horikawa
Affiliation:
masayo-horikawa@aist.go.jp, Advanced Industrial Science and Technology, Nanotechnology Research Institute, 1-1-1 Higashi, Tsukuba, Ibaraki,, 305-8562, Japan
Tetsuo Shimizu
Affiliation:
tetsuo-shimizu@aist.go.jp, Advanced Industrial Science and Technology, Nanotechnology Research Institute, 1-1-1 Higashi, Tsukuba, Ibaraki,, 305-8562, Japan
Get access

Abstract

A large negative resistance is observed in the I-V characteristics of gold nanogap junction when high-bias voltages are applied. This phenomenon is characteristic behaviour on the nanometre scale; it only occurs for gap widths slightly under 13 nm. Furthermore, this junction exhibits a non-volatile resistance hysteresis when the bias voltage is reduced very rapidly from a high level to around 0 V, and when the bias voltage is reduced slowly. This non-volatile resistance change occurs as a result of changes in the gap width between the metal electrodes, brought about by the applied bias voltage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Service, R. F., Science 302, 556 (2003).Google Scholar
2. Zhirnov, V. V. and Cavin, R. K., Nature Materials 5, 1112 (2006).Google Scholar
3. Naitoh, Y., Horikawa, M., Abe, H. and Shimizu, T., Nanotechnology 17 56695674 (2006).Google Scholar
4. Naitoh, Y., Tukagoshi, K., Murata, K. and Mizutani, W., e-J. Surf. Sci. and Nanotech., 1, 4144(2003).Google Scholar
5. Naitoh, Y., Liang, T. T., Azehara, H. and Mizutani, W., Japan. J. Appl. Phys. Part 2, 44, L472474 (2005).Google Scholar
6. Anaya, A., Korotkov, A. L., Bowman, M., Waddell, J. and Davdovic, D., J. Appl. Phys., 93,35013508 (2003).Google Scholar
7. Mayer, T. M., Houston, J. E., Franklin, G. E., Erchak, A. A. and Michalske, T. A., J. Appl. Phys.,85, 81708177 (1999).Google Scholar
8. Simmons, J. G., J. Appl. Phys., 34, 25812590 (1963).Google Scholar
9. Ramachandran, G. K., Edelstein, M. D., Blackburn, D. L., Suehle, J.S., Vogel, E. M., and Richter, C. A., Nanotechnology, 16, 12941299 (2005).Google Scholar