Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T00:36:31.690Z Has data issue: false hasContentIssue false

New Pt-based Superalloy System Designed from First Principles

Published online by Cambridge University Press:  21 September 2018

Vsevolod I. Razumovskiy
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden Department of Theoretical Physics, Moscow Institute of Steel and Alloys, 119049 Moscow, Russia
Eyvaz I. Isaev
Affiliation:
Department of Theoretical Physics, Moscow Institute of Steel and Alloys, 119049 Moscow, Russia Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, SE- 751 21 Uppsala, Sweden Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
Andrei V. Ruban
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Pavel A. Korzhavyi
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Get access

Abstract

Pt-Sc alloys with the γ-γ′ microstructure are proposed as a basis for a new generation of Pt-based superalloys for ultrahigh-temperature applications. This alloy system was identified on the basis of first-principles calculations. Here we discuss the prospects of the Pt-Sc alloy system on the basis of calculated elastic properties, phonon spectra, and defect formation energies.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lupton, D., Adv. Mater. 5, 29 (1990).Google Scholar
2. Whalen, M.V., Platinum Met. Rev. 32(1), 2 (1988).Google Scholar
3. Rytvin, E.I., High-temperature strength of platinum-based alloys (Metallurgy Press, Moscow, 1987) p. 5.Google Scholar
4. Johannesson, G.H., Bligaard, T., Ruban, A.V., Skriver, H.L., Jacobsen, K.W., Norskov, J.K., Phys. Rev. Lett. 88, 255506 (2002).Google Scholar
5. Massalski, T.B., Binary alloy phase diagrams. 2nd ed., vol. 1 (Materials Park, ASTM International, Ohio, 1990) p. 195.Google Scholar
6. Pearson's handbook of crystallographic data for intermetallic phase, 2nd ed., edited by Villars, P. and Calvert, L.D. (Materials Park, ASTM International, Ohio, 1991).Google Scholar
7. Hohenberg, P., Kohn, W., Phys. Rev. B 136, 864 (1964).Google Scholar
8. Vitos, L., Skriver, H.L., Johansson, B., Kollar, J., Comput. Mater. Sci. 18, 24 (2000).Google Scholar
9. Vitos, L., Phys. Rev. B 64, 014107 (2001).Google Scholar
10. Gyorffy, B.L., Phys. Rev. B 5, 2382 (1972).Google Scholar
11. Ruban, A.V., Skriver, H.L., Phys. Rev. B 66, 024201 2002; Ruban, A.V., Simak, S.I., Korzhavyi, P.A., Skriver, H.L. ibid., 66, 024202 (2002).Google Scholar
12. Abrikosov, I.A., A.M.N. Niklasson, Simak, S.I., Johansson, B., Ruban, A.V., Skriver, H.L., Phys. Rev. Lett. 76, 4203(1996); Abrikosov, I.A., Simak, S.I., Johansson, B., Ruban, A.V., Skriver, H.L., Phys. Rev. B 56, 9319(1997).Google Scholar
13. Perdew, J.P., Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
14. Monkhorst, H.J., Pack, J.D., Phys. Rev. B 13, 5188 (1972).Google Scholar
15. Razumovskiy, V.I., Isaev, E.I., Ruban, A.V. and Korzhaviy, P.A., Intermetallics 16, 982 (2008).Google Scholar
16. Vanderbilt, D., Phys. Rev. B 41, R7892 (1990).Google Scholar
17. Baroni, S., De Gironcoli, S., Dal Corso, A., and Giannozzii, P., Rev. Mod. Phys. 73, 515 (2001).Google Scholar
18. Quantum Espresso is a community project for high-quality quantum-simulation software based on density-functional theory and coordinated by Paolo Giannozzi. See http://www.quantumespresso.org and http://www.pwscf.org Google Scholar
19. Perdew, J.P., Bruke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
20. Korzhavyi, P.A., Ruban, A.V., Lozovoi, A.Y., Vekilov, Yu.Kh., Abrikosov, I.A. and Johansson, B., Phys. Rev. B 61, 6003 (2000).Google Scholar
21. Collard, S.M. and McLellan, R.B., Acta Metall. Mater. 40, 699 (1992).Google Scholar
22. Fisher, E.S., Scripta Metall. 20, 279 (1986).Google Scholar
23. Prikhodko, S.V., Yang, H., Ardell, A.J., Carnes, J.D., Isaak, D.G., Metall. Mater. Trans. A 30, 2403 (1999).Google Scholar
24. Chen, K., Zhao, L.R., Tse, J.S., J. Appl. Phys. 93, 2414 (2003).Google Scholar
25. Isaev, E.I., Lichtenstein, A.I., Vekilov, Yu.Kh., Smirnova, E.A., Abrikosov, I.A., Simak, S.I., Ahuja, R. and Johansson, B. Sol. St. Commun. 129, 809 (2004).Google Scholar