Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T07:07:17.740Z Has data issue: false hasContentIssue false

A New Single-Crystal Adsorption Calorimeter for Determining Metal Adsorption and Adhesion Energies

Published online by Cambridge University Press:  15 February 2011

J. T. Stuckless
Affiliation:
Chemistry Department University of Washington Seattle, WA 98195–1700 USA
D. Starr
Affiliation:
Chemistry Department University of Washington Seattle, WA 98195–1700 USA
D. Bald
Affiliation:
Chemistry Department University of Washington Seattle, WA 98195–1700 USA
Charles T. Campbell
Affiliation:
Chemistry Department University of Washington Seattle, WA 98195–1700 USA
Get access

Abstract

A microcalorimeter for measuring adsorption heats on clean single-crystal surfaces is described. The principle is similar to that pioneered by David King's group: A pulse of gas from a molecular beam adsorbs on an ultrathin single crystal's surface, causing a measurable transient heat input and temperature rise. Our novel heat detector is a 9 μm pyroelectric polymer ribbon, which is mechanically driven to make a gentle mechanical/thermal contact to the back of the singlecrystal sample during measurements. Advantages include use of thicker samples (>3 microns), sample preparation at very high temperatures, and measurements at 100 K. We have applied this to study the heats of adsorption of metals on clean, well-defined and single-crystalline oxide surfaces as a detailed function of coverage, from which we also extract the metal/oxide adhesion energy. We obtain pulse-to-pulse standard deviations of >2% for pulses containing >0.03 ML of Cu, and absolute accuracy within a few percent.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Borroni-Bird, C. E. and King, D. A., Rev. Sci. Instrum. 62, 2177 (1991).Google Scholar
2. AI-Sarraf, N., Stuckless, J. T., and King, D. A., Nature 360, 243 (1992).Google Scholar
3. Al-Sarraf, N., Stuckless, J. T., Wartnaby, C. E., et al., Surf. Sci. 283, 427 (1993).Google Scholar
4. Al-Sarraf, N. and King, D. A., Surf. Sci. 307–309, 17 (1994).Google Scholar
5. Stuck, A., Wartnaby, C. E., Yeo, Y. Y., et al., Surf. Sci. 349, 229 (1996).Google Scholar
6. Campbell, C. T., Surface Science Reports (in press).Google Scholar
7. Ertl, G., J. Vac. Sci. Technol. A1, 1247 (1983).Google Scholar
8. Hickman, D. A. and Schmidt, L. D., AIChE Journal 39, 1164 (1993).Google Scholar
9. Ovesen, C. V., Stoltze, P., Norskov, J. K., et al., J. Catal. 134, 445 (1992).Google Scholar
10. Carter, E. A. and Koel, B. E., Surf. Sci. 226, 339 (1990).Google Scholar
11. Paul, A. and Bent, B. E., J. Catal. 147, 264 (1994).Google Scholar
12. Bent, B. E., Chem. Rev. 96, 1361 (1995).Google Scholar
13. Somorjai, G. A., Introduction to Surface Chemistry_ and Catalysis (Wiley-Interscience, New York, 1994).Google Scholar
14. Stuck, A., Wartnaby, C. E., Yeo, Y. Y., et al., Phys. Rev. Let. 74, 578 (1995).Google Scholar
15. Stuckless, J. T., Sarraf, N. Al, Wartnaby, C. E., et al., J. Chem. Phys. 99, 1 (1993).Google Scholar
16. Yeo, Y. Y., Wartnaby, C. E., and King, D. A., Science 268, 1731 (1995).Google Scholar
17. Xu, X., , and Goodman, D. W., Appl. Phys. Lett. 61, 1799 (1992).Google Scholar
18. Xu, X., He, J.-W., and Goodman, D. W., Surface Science 284, 103 (1993).Google Scholar
19. Xu, X. and Goodman, D. W., J. Phys. Chem. 97, 683 (1993).Google Scholar
20. Wu, M.-C. and Goodman, D. W., J. Phys. Chem. 98, 9874 (1994).Google Scholar
21. Campen, D. G. V. and Hrbek, J., J. Phys. Chem. 99, 16389 (1995).Google Scholar
22. Xu, X., Szanyi, J., Xu, Q., et al., Catal. Today 21, 57 (1994).Google Scholar
23. Peden, C. H. F., Kidd, K. B., and Shinn, N. D., J. Vac. Sci. Technol. A9, 1518 (1991)Google Scholar
24. Pierce, D. E., Burns, R. P., and A.Gabriel, K., Thin Solid Films 206, 340 (1991).Google Scholar
25. Campbell, C. T., J. Chem. Soc., Faraday Trans. 92, 1435 (1996).Google Scholar
26. Grant, A. and Campbell, C. T., Phys. Rev. B (in press).Google Scholar
27. Petrie, W. T. and Vohs, J. M., J. Chem. Phys. 101, 8098 (1994).Google Scholar
28. Zafiris, G., Roberts, S. I., and Gorte, R., ACS Sympos. Series 495, 73 (1992).Google Scholar
29. Goodman, D. W., Surf. Rev. Letts. 1, 449 (1994).Google Scholar
30. Goodman, D. W., Surface Review and Letters 2, 9 (1995).Google Scholar
31. Madey, T. E., Diebold, U., and Pan, J.-M., in Adsorption on Ordered Surfaces of Ionic Solids and Thin Films, edited by Freund, H.-J. and Umbach, E. (Springer Series in Surface Sciences, 1993).Google Scholar
32. Diebold, U., Pan, J.-M., and Madey, T. E., Surface Sci. 331–333, 845 (1995).Google Scholar
33. Campbell, C. T. and Ludviksson, A., J. Am. Vac. Soc. A12, 1825 (1994).Google Scholar
34. Ernst, K. H., Ludviksson, A., Zhang, R., et al., Phys. Rev. BII 47, 13782 (1993).Google Scholar
35. Goyhenex, C., Meunier, M., and Henry, C. R., Surface Sci. 350, 103 (1996).Google Scholar
36. Møller, P. J. and Nerlov, J., Surf. Sci. 307–309, 591 (1994).Google Scholar
37. Roberts, S. and Gorte, R. J., J. Chem. Phys. 93, 5337 (1990).Google Scholar
38. Altman, E. I. and Gorte, R. J., J. Catal. 110, 191 (1988).Google Scholar
39. Altman, E. I. and Gorte, R. J., J. Phys. Chem. 93, 1993 (1989).Google Scholar
40. Borroni-Bird, C. E., Al-Sarraf, N., Andersson, S., etal., Chem. Phys. Lett. 183, 516 (1991).Google Scholar
41. Coufal, H. and Lee, W., Appl. Phys. B 44, 141 (1987).Google Scholar
42. Coufal, H. J., Grygier, R. K., Horne, D. E., et al., J. Vac. Sci. Technol. A 5, 2875 (1987)Google Scholar
43. Coufal, H. and Grygier, R. K., Opt, J., Soc. Am. B 6, 2013 (1989).Google Scholar
44. Coufal, H., Winters, H. F., and Bay, H. L., Phys. Rev. B Conden. Matter 44, 4747 (1991).Google Scholar
45. Winters, H. F., Coufal, H. J., and Eckstein, W., J. Vac. Sci. Technol. A 11, 657 (1993)Google Scholar
46. Bauer, E., Poppa, H., and Vishwanath, Y., Surface Sci. 58, 517 (1976).Google Scholar
47. Alnot, P., Auerbach, D. J., Behm, J., et al., Surface Sci. 213, 1 (1989).Google Scholar
48. Overbury, S. H., Bertrand, P. A., and Somorjai, G. A., Chemical Reviews 75, 547 (1975)Google Scholar
49. Pepper, S. V., J. Appl. Phys. 47, 801 (1976).Google Scholar