Published online by Cambridge University Press: 21 February 2011
The mechanical properties of fiber composites are strongly influenced by the debonding of fibers. When an embedded fiber is loaded from one end, debonding can occur at both the loaded end and the embedded end. Existing theories neglect the possibility of debonding from the embedded end and are thus limited in applications to cases with low fiber volume fraction, low fiber modulus, high interfacial strength/interfacial friction ratio or short fiber length. A new twoway fiber debonding theory, which can extend the validity of one-way debonding theories to all general cases, has recently been developed. In this paper, the physical reason for the occurrence of two-way debonding is discussed. The limit of validity for one-way debonding theories is considered. One-way and two-way debonding theories are then compared with respect to the prediction of composite behaviour. The determination of interfacial parameters from the fiber pull-out test will also be described.