Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T14:19:07.915Z Has data issue: false hasContentIssue false

NMR study of proton beam irradiated TlH2PO4

Published online by Cambridge University Press:  01 February 2011

Se Hun Kim
Affiliation:
Department of Physics, Korea University, Seoul 136–701, Korea
Kyu Won Lee
Affiliation:
Department of Physics, Korea University, Seoul 136–701, Korea
Jae Won Jang
Affiliation:
Department of Physics, Korea University, Seoul 136–701, Korea
Cheol Eui Lee
Affiliation:
Department of Physics, Korea University, Seoul 136–701, Korea
Get access

Abstract

We have investigated proton beam irradiation effects on TlH2PO4 (TDP) showing an antiferroelectric phase transition and a ferroelastic phase transition. The sample was irradiated by 1 MeV proton beams to a dose of 1015 ions/cm2 and studied by means of 1H NMR measurements. The NMR rotating-frame spin-lattice relaxation time was measured as a function of temperature, and analyzed in order to understand the proton motions and the order parameter reflecting the structural changes caused by the proton irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Blinc, R. and Zeks, B., Ferroelectrics 72, 193 (1987).Google Scholar
2. Lee, K. S. and Ha, D. H., Phys. Rev. B 48, 73 (1993).Google Scholar
3. Irokawa, K., Komukae, M., Osaka, T. and Makita, Y, J. Phys. Soc. Jpn. 63, 1162 (1994).Google Scholar
4. Matsuo, A., Irokawa, K., Komukae, M., Osaka, T. and Makita, Y., J. Phys. Soc. Jpn. 63, 1626 (1994).Google Scholar
5. Nelms, R. J., Solid State Commun. 39, 741 (1981).Google Scholar
6. Lee, K. S., Ju, S. M., Kim, K. L., Lee, S. K., Kim, J. H., Kim, J. B., Choi, B. C. and Kim, J. N., Ferroelectrics 137, 123 (1992).Google Scholar
7. Lee, K. S. and Kim, K. L., J. Phys. Soc. Jpn. 60, 3207 (1991).Google Scholar
8. Seliger, J., Zagar, V. and Blinc, R., Phys. Rev. B 48, 52 (1993).Google Scholar
9. Blinc, R., rozmarin, M., Milia, F. and Melisaropoulou, M., Solid State Commun. 27, 999 (1978).Google Scholar
10. Nelms, R. H. and Choudhary, R. N. P., Solid State Commun. 38, 321 (1981).Google Scholar
11. Seliger, J., zagar, V., Blinc, R. and Schmidt, V. H., J. Chem. Phys. 88, 3260 (1988).Google Scholar
12. Demos, S. G., Yan, M., Staggs, M., De Yoreo, J. J. and Radousky, H. B., Appl. Phys. Lett. 72, 2367 (1998).Google Scholar
13. Setzler, S. D. et al., Phys. Rev. B 57, 2643 (1998).Google Scholar
14. Stevens, K. T. et al., Appl. Phys. Lett. 75, 1503 (1999).Google Scholar
15. Davis, J. E., Hughes, R. S. and Lee, H. W. H., Chem. Phys. Lett. 207, 540 (1993).Google Scholar
16. Marshall, C. D., Payne, S. A., Henesian, M. A., Speth, J. A. and Powell, H. T., J. Opt. Soc. Am. B 11, 774 (1994).Google Scholar
17. Liu, C. S., Kioussis, Nicholas, Demos, S. G. and Radousky, H. B., Phys. Rev. Lett. 91, 015505 (2003).Google Scholar
18. Lee, C. E., Lee, C. H., Kim, J. H. and Lee, K. S., Phys. Rev. Lett. 75, 3309 (1995).Google Scholar
19. Lee, C. H., Lee, K. W., Lee, C. E. and Lee, K. S., Phys. Rev. B 55, 11088 (1997).Google Scholar
20. Lee, C. E., Dalal, N. S. and Fu, R., Curr. Appl. Phys. 3, 405 (2003).Google Scholar