Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T01:20:56.354Z Has data issue: false hasContentIssue false

Nmr Techniques for Studying Ionic Diffusion in Solids

Published online by Cambridge University Press:  15 February 2011

David C. Ailion*
Affiliation:
Department of Physics, University of Utah, Salt Lake City, UT 84112
Get access

Abstract

A survey of NMR relaxation time techniques for studying ionic diffusion in solids is presented. Particular emphasis is placed on discussing the kinds of information obtainable from T1, T, TlD, and TlD' measurements. Applications to the study of local and nonlocal diffusion, diffusion in weakly magnetic systems, and motions between unequal potential wells are described. Relaxation due to fluctuating dipolar, quadrupolar, and chemical shift anisotropy interactions is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reif, F., Phys. Rev. 100, 1597 (1955).CrossRefGoogle Scholar
2. Holcomb, D.F. and Norberg, R.E., Phys. Rev. 98, 1074 (1955).CrossRefGoogle Scholar
3. Chung, I., Story, H.S., and Roth, W.L., J. Chem. Phys. 63, 4903 (1975).CrossRefGoogle Scholar
4. Jellison, G.E. Jr., Solid State Commun. 30, 481 (1979).Google Scholar
5. Bersohn, R. and Gutowsky, H.S., J. Chem. Phys. 22, 651 (1954).Google Scholar
6. Wei, S.H.N. and Ailion, D.C., Phys. Rev. B 19, 4470 (1979).Google Scholar
7. An excellent introductory text is Principles of Magnetic Resonance, 2nd ed. (Springer-Verlag, Berlin 1978) by Slichter, C.P..Google Scholar
8. Convenient charts which show basic NMR features for each nucleus (e.g., gyromagnetic ratio, quadrupole moment, and NMR sensitivity) are readily available from instrument companies like Varian Associates and Brucker Magnetics Inc.Google Scholar
9. Hartmann, S.R. and Hahn, E. L., Phys. Rev. 128, 2042 (1962).Google Scholar
10. Abragam, A., The Principles of Nuclear Magnetism (Clarendon Press, Oxford 1961) p. 33.Google Scholar
11. See pp. 180181 of Ref. [7].Google Scholar
12. Andrew, E.R. and Eades, R.G., Proc. Roy. Soc. A218, 537 (1953).Google Scholar
13. Stokes, H.T., Case, T.A., Ailion, D.C., and Wang, C.H., J. Chem. Phys. 70 3572 (1979).Google Scholar
14. Messiah, A., Quantum Mechanics, Vol. II (Wiley, New York 1966), Chs. XVI and XVII.Google Scholar
15. Bloembergen, N., Purcell, E.M., and Pound, R.V., Phys. Rev. 73, 679 (1948).Google Scholar
16. Ailion, D.C. in Advances in Magnetic Resonance, Vol. 5, Waugh, J.S. ed. (Academic Press, New York 1971) pp. 177227.Google Scholar
17. Redfield, A.G., Phys. Rev. 98, 1787 (1955).CrossRefGoogle Scholar
18. Look, D.C. and Lowe, I.J., J. Chem. Phys. 44, 2995 (1966).CrossRefGoogle Scholar
19. Slichter, C.P. and Holton, W.C., Phys. Rev. 122, 1701 (1961).CrossRefGoogle Scholar
20. Slichter, C.P. and Ailion, D.C., Phys. Rev. 135, A1099 (1964).Google Scholar
21. Ailion, D.C. and Slichter, C.P., Phys. Rev. 137, A235 (1965).Google Scholar
22. Ailion, D.C. and Ho, P., Phys. Rev. 168, 662 (1968).Google Scholar
23. Jeener, J. and Broekaert, P., Phys. Rev. 157, 232 (1967).Google Scholar
24. Stokes, H.T. and Ailion, D.C., Phys. Rev. B 16, 4746 (1977).CrossRefGoogle Scholar
25. Goldman, M., Spin Temperature and Nuclear Magnetic Resonance in Solids (Clarendon Press, Oxford 1970), p. 37.Google Scholar
26. Stokes, H.T. and Ailion, D.C., Phys. Rev. B 18, 141 (1978).Google Scholar
27. Beckett, J.R., Pourquié, J. and Ailion, D.C., in Proc. of MRS Symposium on Nuclear and Electron Resonance Spectroscopies Applied to Materials Science (North-Holland, Boston 1980).Google Scholar
28. Polak, M. and Ailion, D.C., J. Chem Phys. 67, 3029 (1977).CrossRefGoogle Scholar
29. Kitts, E.L. Jr., Ikeya, M., and Crawford, J.H. Jr., Phys. Rev. B 8, 5840 (1973).Google Scholar
30. Peterson, N., in Diffusion in Solids: Recent Developments, Nowick, A.S., Burton, J.J. eds. (Academic Press, New York 1975), pp. 115170.Google Scholar
31. Wolf, D., Spin Temperature and Nuclear Spin Relaxation in Matter (Clarendon Press, Oxford 1979).Google Scholar
32. Carr, H.Y. and Purcell, E.M., Phys. Rev. 94, 630 (1954).Google Scholar
33. Stejskal, E.O. and Tanner, J.E., J. Chem. Phys. 42, 288 (1965).Google Scholar
34. Gordon, R.E. and Strange, J.H., J. Phys. C: Solid St. Phys. 11, 3213 (1978).CrossRefGoogle Scholar
35. Brünger, G., Kanert, D., and Wolf, D., Solid State Commun. 33, 569 (1980).Google Scholar
36. Das, T.P. and Hahn, E.L., in Solids State Physics: Supplement 1, Seitz, F., Turnbull, D eds. (Academic Press, New York 1958).Google Scholar
37. Tzalmona, A. and Ailion, D.C., Phys. Rev. Lett. 44, 460 (1980).Google Scholar
38. Stokes, H.T., Case, T.A., and Ailion, D.C., to be published.Google Scholar
39. Kanert, O., Küchler, R., and Mali, M., J. Phys. (Paris) 41, C6404 (1980).CrossRefGoogle Scholar
40. Waugh, J.S., Huber, L.M., and Haeberlen, U., Phys. Rev. 20, 180 (1968).Google Scholar
41. See p. 316 of Ref. 10.Google Scholar