Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T14:16:04.167Z Has data issue: false hasContentIssue false

No Correlation Between Porous Silicon Photoluminescence and Surface Hydrogen Species

Published online by Cambridge University Press:  25 February 2011

S.M. Geoqrg
Affiliation:
Dept. of Chemistry and Biochemistry, Univ. of Colorado, Boulder, CO 80309
M.B. Robinson
Affiliation:
Dept. of Chemistry and Biochemistry, Univ. of Colorado, Boulder, CO 80309
A.C. Dillon
Affiliation:
Dept. of Chemistry and Biochemistry, Univ. of Colorado, Boulder, CO 80309
Get access

Abstract

The photoluminescence (PL) of porous silicon has been attributed to quantum confinement, amorphous silicon, or surface species such as hydrogen, polysilanes or siloxene. Our research has tested the early claims that surface hydrogen is responsible for PL. Our initial studies examined the effect of thermal annealing on surface hydrogen and PL in situ in an ultrahigh vacuum chamber. The results showed that the PL decreased between 450–550 whereas H2 was desorbed from surface SiH2 species between 500–575 K. There was no direct correlation between the PL and the loss of SiH2 surface species. Our most recent investigations have monitored PL and surface hydrogen species as a function of HF etching time for electrochemically anodized porous silicon samples that were not initially photoluminescent. While the surface hydrogen species continually decreased versus HF etching time, the photoluminescence did not appear until after HF etching times of 20–80 minutes depending on initial sample porosity. These results again illustrated that there is no direct correlation between the PL and surface hydrogen species.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1. Uhlir, A., Bell. Sys. Tech. 35, 333 (1956).Google Scholar
2. Turner, D.R., J. Electrochem. Soc. 105, 402 (1958).Google Scholar
3. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
4. Cullis, A.G. and Canham, L.T., Nature 353, 335 (1991).Google Scholar
5. Bsiesy, A., Vial, J.C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A. and Bomchil, G., Surf. Sci. 254, 195 (1991).Google Scholar
6. Sagnes, I., Halimaoui, A., Vincent, G. and Badoz, P.A., Appl. Phys. Lett. pre-print, (1992).Google Scholar
7. Perez, J.M., Villalobos, J., , McNeill, Prasad, J., Cheek, R., Kelber, J., Estrera, J.P., Stevens, P.D. and Glosser, R., Appl. Phys. Lett. 61, 563 (1992).Google Scholar
8. Tsai, C., Li, K.-H., Sarathy, J., Shih, S., Campbell, J.C., Hance, B.K. and White, J.M., Appl. Phys. Lett. 59, 2814 (1991).Google Scholar
9. Tsai, C., Li, K.-H., Kinosky, D.S., Qian, R.-Z., Hsu, T.-C., Irby, J.T., Banerjee, S.K., Tasch, A.F., Campbell, J.C., Hance, B.K. and White, J.M., Appl. Phys. Lett. 60, 1700 (1992).CrossRefGoogle Scholar
10. Prokes, S.M., Freitas, J.A. and Searson, P.C., Appl. Phys. Lett. 60, 3295 (1992).CrossRefGoogle Scholar
11. Prokes, S.M., Carlos, W.E. and Bermudez, V.M., Applied Physics Letters 61, 1447 (1992).CrossRefGoogle Scholar
12. McCord, P., Yau, S.L. and Bard, A.J., Science 257, 68 (1992).Google Scholar
13. Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J. and Cardona, M., Solid State Comm. 81, 307 (1992).CrossRefGoogle Scholar
14. Gupta, P., Colvin, V.L. and George, S.M., Phys. Rev. 37, 8234 (1988).CrossRefGoogle Scholar
15. Gupta, P., Dillon, A.C., Bracker, A.S. and George, S.M., Surf. Sci. 245, 360 (1991).Google Scholar
16. Dillon, A.C., Gupta, P., Robinson, M.B., Bracker, A.S. and George, S.M., J. Vac. Sci. Technol. A 9, 2222 (1991).Google Scholar
17. Dillon, A.C., Robinson, M.B., Han, M.Y. and George, S.M., J. Electrochem. Soc. 139,537 (1992).Google Scholar
18. Robinson, M.B., Dillon, A.C., Haynes, D.R. and George, S.M., Appl. Phys. Lett. 61, 1414 (1992).Google Scholar
19. Robinson, M.B., Dillon, A.C. and George, S.M., Appl. Phys. Lett. 62, 1493 (1993).Google Scholar
20. Robinson, M.B., Dillon, A.C., Haynes, D.R. and George, S.M., Mat. Res. Soc. Proc. 256, 17 (1991).Google Scholar
21. Tsai, C., Li, K.-H., Campbell, J.C., Hance, B.K. and White, J.M., J. Elect. Mat. 21, 589 (1992).CrossRefGoogle Scholar
22. Suemune, I., Noguchi, N. and Yamanishi, M., Jpn. J. Appl. Phys. 31, L494 (1992).Google Scholar
23. Tischler, M.A., Collins, R.T., Stathis, J.H. and Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992).Google Scholar
24. Collins, R.T., Tischler, M.A. and Stathis, J.H., Appl. Phys. Lett. 61, 1649 (1992).Google Scholar
25. Bawendi, M.G., PJ. Carroll, Wilson, W.L. and Brus, L.E., J. Chem. Phys. 96, 946 (1992).Google Scholar
26. Ito, T., Yasumatsu, T., Watanabe, H. and Hirald, A., Jpn. J. Appl. Phys. 29, L201 (1990).Google Scholar
27. Beale, M.I.J., Chew, N.G., Uren, M.J., Cullis, A.G. and Benjamin, J.D., Appl. Phys. Lett. 46, 86 (1985).Google Scholar
28. Hu, S.M. and Kerr, D.R., J. Electrochem. Soc. 114,414 (1967).Google Scholar
29. Kern, W. and Deckert, C.A. In Thin Film Processes; Vossen, J. L. and Kern, W., Ed.; Academic Press: New York, 1978; pp 401.Google Scholar
30. Wolfe, J.P., Phys. Today March, 46 (1982).Google Scholar