Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T10:05:00.190Z Has data issue: false hasContentIssue false

Non-invasive high-resolution acoustic microscopy technique using embedded nanostructures

Published online by Cambridge University Press:  01 February 2011

Daniel Wulin
Affiliation:
dsw2104@columbia.edu, Harvard University, SEAS, 29 Oxford St, Cambridge, MA, 02138, United States
Shriram Ramanathan
Affiliation:
shriram@deas.harvard.edu, Harvard University, SEAS, 29 Oxford St, Cambridge, MA, 02138, United States, 617-496-0358, 617-495-9837
Get access

Abstract

An opto-acoustic system capable of operating at frequencies greater than 1 GHz with novel biological applications is proposed for the first time. Metallic spheres with radii on the order of hundreds of nanometers dispersed inside a bio-matrix can be used to generate in-situ ultra-high frequency acoustic waves whose normal mode frequencies can be calculated using Lamb's theory for acoustic oscillations of elastic spheres. The frequency and amplitude of the resulting acoustic waves can be related to the physical properties of the metallic spheres and the surrounding bio-matrix: the acoustic waves produced by the metallic spheres are well-suited to high resolution acoustic imaging. We anticipate that our approach will open up new nanoscale techniques to study cells non-invasively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Xu, M., and Wang, L.V., Rev. Sci. Instrum. 77, 041101 (2006).10.1063/1.2195024Google Scholar
2. Ramanathan, S., and Cahill, D.G., J. Mater. Res. 21, 1204 (2006).10.1557/jmr.2006.0141Google Scholar
3. Ku, G., Wang, X., Stoica, G., and Wang, L.V., Phys. Med. Biol. 49, 1329 (2004).10.1088/0031-9155/49/7/018Google Scholar
4. Fetter, A.L., and Walecka, J.D., Theoretical mechanics of particles and continua (McGraw-Hill 1980)Google Scholar
5. Foster, F.S., Pavlin, C.J., Harasiewicz, K.A., Cheistopher, D.A., and Turnbull, D.H., Ultrasound Med. Biol. 26, 1 (2000)10.1016/S0301-5629(99)00096-4Google Scholar
6. Suresh, S., J. Mater. Res. 21, 18711877(2006)10.1557/jmr.2006.0260Google Scholar
7. Lim, C.T., Zhou, E.H., and Quek, S.T., J. Biomech. 39, 195216 (2006).10.1016/j.jbiomech.2004.12.008Google Scholar
8. Azzazy, H., Mansour, M.M.H., and Kazmierczak, S.C., Clin. Chem. 52, 1238 (2006).10.1373/clinchem.2006.066654Google Scholar
9. Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P., Science 281, 2013 (1998).10.1126/science.281.5385.2013Google Scholar
10. Cui, Y., Wei, Q., Park, H., and Lieber, C.M., Science 293, 1289-1292 (2001).10.1126/science.1062711Google Scholar
11. Penn, S.G., He, L., and Natan, M.J., Curr. Opin. Chem. Biol. 7, 609 (2003)10.1016/j.cbpa.2003.08.013Google Scholar
12. Nan, X., Potma, E.O., and Xie, X.S., Biophys. J. 91, 728 (2006)10.1529/biophysj.105.074534Google Scholar
13. Dijk, M.A. van, Lippitz, M. and Orrit, M., Phys. Rev. Lett. 95, 267406 (2005)10.1103/PhysRevLett.95.267406Google Scholar
14. Lamb, H., Proc. London Math. Soc. 13, 5166 (1882)Google Scholar
15. Nisoli, M., Silvestri, S.D., Cavalleri, A., Malvezzi, A.M., Stella, A., Lanzan, G., Cheyssac, P., and Kofman, R., Phys. Rev. B 55, 13424 (1997).10.1103/PhysRevB.55.R13424Google Scholar
16. Lim, H.S., Kuok, M.H., Ng, S.C., and Wang, Z.K., Appl. Phys. Lett. 84, 4182 (2004)Google Scholar
17. Ramanathan, S., Semmens, J.E., and Kessler, L.W., Proc. Elect. Comp. Tech. Conf., 1865 (2006)Google Scholar
18. Canumalla, S., IEEE Trans. Compon. Pack Technol. 22, 582 (1999)10.1109/6144.814975Google Scholar
19. Ying, L., Bruckbauer, A., Zhou, D., Gorelik, J., Shevchuk, A., Lab, M., Korchev, Y., and Klenerman, D., Phys. Chem. Chem. Phys. 7, 2859 (2005).Google Scholar