Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T14:17:30.821Z Has data issue: false hasContentIssue false

Non-Linear Optical Response of Metallic and Emiconducting Nanocrystals in Fused Silica

Published online by Cambridge University Press:  03 September 2012

R. G. Elliman
Affiliation:
Electronic Materials Engineering Department
B. Luther-Davies
Affiliation:
Laser Physics Centre, R.S.Phys.S.E., Institute of Advanced Study, Australian National University, Canberra, ACT 0200.
M. Samoc
Affiliation:
Laser Physics Centre, R.S.Phys.S.E., Institute of Advanced Study, Australian National University, Canberra, ACT 0200.
A. Dowd
Affiliation:
Electronic Materials Engineering Department
Get access

Abstract

The linear and nonlinear optical properties of Ge-implanted fused-silica were examined and compared with Au- and Si-implanted samples. Samples as-implanted with 1.0 MeV Ge ions to a fluence of 3x1017 Ge.cm-2 exhibited relatively large non-linearities, |n2| ≤5x10-12 cm2/W, and fast relaxation times, ∼lps. In contrast, samples implanted with comparable fluences of Au ions exhibited smaller non-linearities, |n2| ∼1x10-13 cm2/W, and slower response times, ≥ 10ps. The non-linearity for Ge was much larger than that for samples as-implanted with Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Flytzanis, C., Hache, F., Klein, M.C., Ricard, D. and Roussignol, Ph., chapter V in ‘Prog. in Optics XXIX’, ed. E., Wolf Elsevier, (1991).Google Scholar
2 Fukumi, K., Chayahara, A., Kadono, K., Sakaguchi, T., Horino, Y., Miya, M., Fujii, K., Hayakawa, J. and Satou., M. J. Appl. Phys. 75, 3075 (1994)Google Scholar
3 Magruder, R.H. HII, Osborne, D.H and Zuhr, R.A., J. Noncryst. Sol., 176, 299 (1994).Google Scholar
4 Haglund, R.F., Yang, L., III,Magruder, R.H. White, C.W., Zuhr, R.A., Yang, L., Dorsinville, R. and Alfano, R.R.. Nucl. Instr. Meth. B91, 493 (1994)Google Scholar
5 Hosono, H., Abe, Y., Lee, Y., Tokizaki, T. and Nakamura, A.. Appl. Phys. Lett. 61, 2747 (1992)Google Scholar
6 Takeda, Y., Hioki, T., Motohiro, T., Noda, S. and Kurauchi, T., Nucl. Instr. Meth. B91, 515 (1994)Google Scholar
7 Magruder, R.H. III, Weeks, R.A., Morgon, S.H., Pan, Z., Henderson, D.O. and Zuhr, R.A.. J. Noncryst. Sol. 192/193, 546 (1995)Google Scholar
8 White, C.W., Budai, J.D., Zhu, J.G., Withrow, S.P., Hembree, D.M., Henderson, D.O., Ueda, A., Tung, Y.S. and Mu, R., Proceedings of Symposium A, MRS Fall Meeting (1995).Google Scholar
9 Zhu, J.G., White, C.W., Budai, J.D., Withrow, S.P. and Chen, Y., J.Appl. Phys. 78,4386 (1995)Google Scholar
10 Atwater, H.A., Shcheglov, K.V., Wong, S.S., Vahala, K.J., Flagan, R.C., Brongersma, M.L. and Polman, A., Mat. Res. Soc. Symp. Proc. 316,409 (1994)Google Scholar
11 Bohren, C.F. and Huffman, D.R., ‘Absorption and Scattering of Light by Small Particles’, J.Wiley & sons, NY. (1983).Google Scholar
12 Zhao, M., Cui, Y., Samoc, M. and Prasad, P.N., J. Chem. Phys. 95, 3991 (1991)Google Scholar
13 Mills, D.L., ‘Nonlinear Optics’, Springer-Verlag, NY., (1991)Google Scholar
14 Samoc, M., private communication.Google Scholar
15 Wang, S., ‘Fundamentals of Semiconductor Theory and Device Physics’, Prentice-Hall, London, (1989)Google Scholar