Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T21:34:29.575Z Has data issue: false hasContentIssue false

Nonreciprocal optical Bloch oscillations in garnet/silicon-on-insulator waveguide arrays

Published online by Cambridge University Press:  22 March 2011

Pradeep Kumar
Affiliation:
Department of Physics, Michigan Technological University, Houghton MI 49931 U.S.A.
Miguel Levy
Affiliation:
Department of Physics, Michigan Technological University, Houghton MI 49931 U.S.A.
Get access

Abstract

We show that nonreciprocal Bloch-like oscillations can emerge in passive optical waveguide arrays with linearly growing effective index in the absence of loss or gain. Spectral asymmetry, a difference in propagation constants and Bloch oscillation periods in opposite propagation directions, are established by imposing different vertical spatial index gradients at the substrate/core, and core/cover interfaces in the presence of transverse magnetization. A model system consisting of an array of transversely magnetized asymmetric garnet/silicon-on-insulator waveguides is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zener, C., Proc. R. Soc. London A 145, 523529 (1934).Google Scholar
2. Morandotti, R., Peschel, U., Aitchison, J. S., Eisenberg, H. S. and Silberberg, Y., Phys. Rev. Lett. 83, 47564759 (1999).Google Scholar
3. Pertsch, T., Dannberg, P., Elflein, W., Bräuer, A., and Lederer, F., Phys. Rev. Lett. 83, 47524755 (1999).Google Scholar
4. Peschel, U., Pertsch, T. and Lederer, F., Opt. Lett. 23, 17011703 (1998)Google Scholar
5. Dötsch, H., Hertel, P., Lührmann, B., Sure, S., Winkler, H.P., and Ye, M., IEEE Trans. On Magnetics 28, 2979 (1992)Google Scholar
6. Fujita, J., Levy, M., Osgood, R. M. Jr., Wilkens, L., and Doetsch, H., IEEE Photonics Technol. Lett. 12, 15101512 (2000).Google Scholar
7. Hastings, J. T., Lim, Michael H., Goodberlet, J. G., and Smith, Henry I., J. Vac. Sci. Technol. B 20, 27532757 (2002)Google Scholar
8. Yokoi, H., Mizumoto, T., and Shoji, Y., Appl. Opt. 42, pp. 66056612, (2003)Google Scholar
9. Bahlmann, N., Lohmeyer, M., Zhuronmkyy, O., Dötsch, H., Hertel, P., Optics Comm. 161, 330337 (1999)Google Scholar
10. Espinola, Richard L., Izuhara, Tomoyuki, Tsai, Ming-Chun, Osgood, Richard M. Jr. and Dötsch, Horst, Opt. Lett. 29, 941943 (2004)Google Scholar
11. Feit, M.D. and Fleck, J.A., Applied Optics 19, 11541164 (1980)Google Scholar
12. Levy, Miguel and Kumar, Pradeep, Opt. Lett. 35, 31473149 (2010)Google Scholar
13. Mino, S., Matsuoka, M., Tate, A., Shibukawa, A. and Ono, K., Jpn. J. Appl. Phys. 31, 17861792 (1992)Google Scholar
14. Shintaku, T., Uno, T. and Kobayashi, M., J. Appl. Phys. 74, 48774881 (1993)Google Scholar
15. Pertsch, T., Zentgraf, T., Peschel, U., Brauer, A. and Lederer, F., Appl. Phys. Lett. 80, 32473249 (2002)Google Scholar