Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-29T14:58:26.906Z Has data issue: false hasContentIssue false

Nonvolatile Floating Gate Memory Devices Containing AgInSbTe-SiO2 Nanocomposite Thin Film Prepared by Sputtering Method

Published online by Cambridge University Press:  01 February 2011

Tsung-Eong Hsieh
Affiliation:
ccip0401.mse95g@nctu.edu.tw, National Chiao Tung University, Department of Materials Science and Engineering, Hsinchu, Taiwan, Province of China
Kuo-Chang Chiang
Affiliation:
tehsieh@mail.nctu.edu.twtehsieh@cc.nctu.edu.tw, National Chiao Tung University, Department of Materials Science and Engineering, Hsinchu, Taiwan, Province of China
Get access

Abstract

AgInSbTe (AIST)-SiO2 nanocomposite layer prepared by a one-step sputtering process utilizing target-attachment method was implanted in the nonvolatile floating gate memory (NFGM) devices. Device sample subjected to post annealing at 400°C for 2 min in atmospheric ambient exhibited a significant hysteresis memory window (ΔVFB) shift = 5.91V and charge density = 5.22×12 cm-2 after ±8V voltage sweep. During the retention time test, a ΔVFB shift about 3.50 V and charge loss about 28.4% were observed in the sample after a ±5V voltage stress for 104 sec. Cross-sectional TEM revealed that the nanocomposite layer contains the crystalline AIST nanoparticles with the sizes about 5 to 7 nm embedded in SiO2 matrix. XPS analysis indicated that annealing induces the reduction of antimony oxides to form metallic Sb nanocrystals and suppresses the oxygen defects and charge loss in nanocomposite layer. Analytical results illustrated that the utilization of AIST-SiO2 nanocomposite layer may simplify the preparation of NFGM device with satisfactory electrical properties, implying a promising feasibility of such a nanocomposite layer to NFGM devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tiwari, S. Rana, F. Chan, K. Hanafi, H. Wei, C. and Buchanan, D. Tech. Dig.-Int. Electron Devices Meet. 1995, 521.Google Scholar
2 Wang, C. C. Wu, J. Y. Chiou, Y. K. Chang, C. H. and Wu, T. B. Appl. Phys. Lett. 91, 202110 (2007).Google Scholar
3 Prakaipetch, P. Uraoka, Y. Fuyuki, T. Tomyo, A. Takahashi, E. Hayashi, T. Sano, A. and Hori, S., Appl. Phys. Lett. 89, 093502 (2006).Google Scholar
4 Kim, D. W. Kim, T. and Banerjee, S. K. IEEE Trans. Electron Devices 50, 1823 (2003).Google Scholar
5 Lee, P. F. Lu, X. B. Dai, J. Y. Chan, H. L. W. Jelenkovic, E. and Tong, K. Y. Nanotechnology, 17, 1202, (2006).10.1088/0957-4484/17/5/006Google Scholar
6 Ryu, S. W. Choi, Y. K. Mo, C. B. Hong, S. H. Park, P. K. and Kang, S. W. J. Appl. Phys. 101, 026109 (2007).Google Scholar
7 Kim, J. H. Baek, K. H. Kim, C. K. Kim, Y. B. and Yoon, C. S. Appl. Phys. Lett. 90, 123118 (2007).Google Scholar
8 Jang, Y. S. Yoon, J. H. and Elliman, R. G. Appl. Phys. Lett. 92, 253108 (2008).Google Scholar
9 , Dufourcq, Mur, P. Gordon, M. J. Minoret, S. Coppard, R. and Baron, T. Mater. Sci. Eng., C27, 1496 (2007).Google Scholar
10 Samanta, S. K. Yoo, W. J. Samudra, G. Tok, E. S. Bera, L. K. and Balasubramanian, N. Appl. Phys. Lett. 87, 113110 (2005).10.1063/1.2045555Google Scholar
11 Liu, Z. Lee, C. Naratanan, V. Pei, G. and Kan, E. C. IEEE Trans. Electron Devices 49, 1606 (2002).Google Scholar
12 Wang, X. J. Zhang, L. D. Liu, M. Zhang, J.P. and He, G. Appl. Phys. Lett. 92, 122901 (2008).Google Scholar
13 Wang, C. C. Tseng, J. Y. Wu, T. B. Wu, L. J. Liang, C. S. and Wu, J. M. Appl. Phys. Lett. 99, 026102 (2006).Google Scholar
14 Chou, C. C. Hung, F. Y. and Lui, T. S. Scripta Materialia 56, 1107 (2007).Google Scholar
15 Lide, D. R. CRC Handbook on Chemistry and Physics (A CRCnet BASE Product, Taylor and Francis Group, LLC), 89th ed., (2008-2009), 12114.Google Scholar
16 Mai, H.-C. and Hsieh, T.-E. Jpn. J. Appl. Phys. 46, 5834 (2007).10.1143/JJAP.46.5834Google Scholar
17 Mai, H.-C. Hsieh, T.-E. Huang, S.-H. Lin, S.-S. and Lee, T.-S. Jpn. J. Appl. Phys. 47(2008), 6029.Google Scholar
18 Maikap, S. Rahaman, S. Z. and Tien, T. C. Nanotechnology 19, 435202 (2008).Google Scholar
19 Moulder, J. F. W. F Stickle, Sobol, P. E. and Bombem, K. D. Handbook of X-ray Photoelectron Spectroscopy, 2nd ed., Physical Electronics, Minnesota, 1992.Google Scholar