Published online by Cambridge University Press: 08 March 2011
ZnO nanostructures have attracted a great deal of interest because of their biocompatibility and outstanding optical and piezoelectric properties. Their uses are widely varying, including incorporation in sensors, solar cells, and nanogenerators. Biological systems are yet another area of application of ZnO nanowires. Apart from their electrical and optical properties, ZnO nanostructures can be used for the mechanical reinforcement of existing biomimetic scaffolds such as collagen and/or other biodegradable polymers (poly(lactic acid), polyglycolide, poly(alkyene succinate)s or polyhydroxylalkanoates). In this work, we have demonstrated a cheap and comparatively facile hydrothermal growth method for the bulk production of ZnO nanostructures exhibiting an aster-like geometry. The novel nanostructures of ZnO can be used as reinforced material to biopolymers. The aster shape has presented an increased surface area, providing a means for enhancing the stabilization of the gels and\or polymers. With controllable growth of ZnO nanostructures this method allows the geometry which could be tuned for maximal coupling between the two phases of composite and increased mechanical strength.