Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T07:08:36.620Z Has data issue: false hasContentIssue false

Novel Fabrication of C-Doped Base InGaAs/InP DHBT Structures For High Speed Circuit Applications

Published online by Cambridge University Press:  10 February 2011

R.F. Kopf
Affiliation:
Lucent Technologies, Bell Laboratories Division, 700 Mountain Ave., Murray Hill, NJ 07974.
R.A. Hamm
Affiliation:
Lucent Technologies, Bell Laboratories Division, 700 Mountain Ave., Murray Hill, NJ 07974.
R.J. Malik
Affiliation:
Ovation Semiconductor, 300 First St. N.E. Rochester, MN 55906.
R.W. Ryan
Affiliation:
Lucent Technologies, Bell Laboratories Division, 700 Mountain Ave., Murray Hill, NJ 07974.
J. Burm
Affiliation:
Lucent Technologies, Bell Laboratories Division, 700 Mountain Ave., Murray Hill, NJ 07974.
A. Tate
Affiliation:
Lucent Technologies, Bell Laboratories Division, 700 Mountain Ave., Murray Hill, NJ 07974.
Y-K. Chen
Affiliation:
Lucent Technologies, Bell Laboratories Division, 700 Mountain Ave., Murray Hill, NJ 07974.
G. Georgiou
Affiliation:
Lucent Technologies, Bell Laboratories Division, 700 Mountain Ave., Murray Hill, NJ 07974.
D.V. Lang
Affiliation:
Lucent Technologies, Bell Laboratories Division, 700 Mountain Ave., Murray Hill, NJ 07974.
M. Geva
Affiliation:
Lucent Technologies, Bell Laboratories Division, 700 Mountain Ave., Murray Hill, NJ 07974.
F. Ren
Affiliation:
Lucent Technologies, Bell Laboratories Division, 700 Mountain Ave., Murray Hill, NJ 07974.
Get access

Abstract

We have fabricated InGaAs/InP based DHBTs for high speed circuit applications. A process involving both wet chemical and ECR plasma etching was developed. Carbon was employed as the p-type dopant of the base layer for excellent device stability. Both the emitter-base and base-collector regions were graded using quaternary InGaAsP alloys. The extrinsic emitter-base junction is buried for junction passivation to improve device reliability. The use of an InP collector structure with the graded region results in high breakdown voltages of 8V to IOV, with no current blocking. The entire structure is encapsulated with spin-on-glass. These devices show no degradation in DC characteristics after operation at an emitter current density of 90kA/cm2 and a collector bias, VCE, of 2V at room temperature for over 500 hours. Typical common emitter current gain was 50. An ft of 80 and fmax of 155 GHz were achieved for 2 × 4 μm2 emitter size devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Caffin, D., Bouché, M., Meghelli, M., Duchenois, A.M. and Launay, P., Electronics Letters 33, p. 149 (1997).Google Scholar
2. Tanaka, S., Hayama, H., Furukawa, A., Baba, T., Mizuta, M. and Honjo, K., Electronics Letters 26, p. 1439 (1990).10.1049/el:19900923Google Scholar
3. Caffin, D., Duchenois, A.-M., Héliot, F., Besombes, C., Benchimol, J.-L. and Launay, P., IEEE Transactions on Electron Devices, 44, p. 930 (1997).Google Scholar
4. Yamahata, S., Kurishima, K., Nakajima, H., Kobayashi, T. and Matsuoka, Y., IEEE GaAs IC Symposium, p.345 (1994).Google Scholar
5. Baquedano, J.A., Levi, A.F.J. and Jalali, B., Appl. Phys. Lett. 64, p. 67 (1994).Google Scholar
6. Kurishima, K., Nakajima, H., Yamahata, S., Kobayashi, T. and Matsuoka, Y., Jpn. J. App. Phys. 34, p.1221 (1995).10.1143/JJAP.34.1221Google Scholar
7. Mckinnon, W.R., McAlister, S.P., Abid, Z., Guzzo, E.E. and Laframboise, S., Can. J. Phys. (Suppl.) 74, p.S239 (1996).Google Scholar
8. Malik, R.J., Hanmm, R.A., Kopf, R.F., Ryan, R.W., Montgomery, R.K., Lin, J., Humphrey, D.A., Tate, A., and Chen, Y-K., presented at the Device Research Conference, Santa Barbara, CA June 25–26 (1996).Google Scholar
9. Ren, F., Fullowan, T.R., Lothian, I., Wisk, P.W., Abernathy, C.R., Kopf, R.F., Emerson, A.B., Downey, S.W., and Pearton, S.J., Appl. Phys. Lett. 59, p. 3613 (1991).Google Scholar
10. Lee, J.W., Pearton, S.J., Abernathy, C.R., Hobson, W.S., and Ren, F., Solid State Electromcs, 39, p. 1095 (1996).Google Scholar
11. Heistand, R.H. II, DeVellis, R., Manial, T.A., Kennedy, A.P., Stokich, T.M., Townsend, P.H., Garrou, P.E., Takahashi, T., Adema, G.M., Berry, M. J. and Turlik, I., Intl. Journal of Microcircuits and Electronic Packaging 15, p. 183 (1992).Google Scholar
12. Ren, F., Fullowan, T.R., Pearton, S.J., Lothian, I., Esagui, R., Abernathy, C.R., and Hobson, W.S., J. Vac. Sci. Technol. A11, p. 1768 (1993).10.1116/1.578422Google Scholar
13. Ren, F., Harem, R.A., Lothian, JR., Wilson, R.G., and Pearton, S.J., Solid State Electronics 39, p. 763 (1996).Google Scholar