Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T08:22:47.494Z Has data issue: false hasContentIssue false

Novel Morphologies of InAs Quantum Dot Growth on GaAs Surfaces Containing Nanostructures Formed by Droplet Epitaxy

Published online by Cambridge University Press:  01 February 2011

Jihoon Lee
Affiliation:
jxl14@uark.edu, UNIV OF ARKANSAS, MICROEP, 226 Physics Building, MICROEP UNIV OF ARKANSAS, FAYETTEVILLE, AR, 72701, United States, 479-575-3169, 479- 575-4580
Zh. M. Wang
Affiliation:
zmwang@uark.edu, UNIVERSITY OF ARKANSAS, Department of Physics, Department of Physics, University of Arkansas, FAYETTEVILLE, AR, 72701, United States
B.L. Liang
Affiliation:
liang@uark.edu, UNIVERSITY OF ARKANSAS, MICROEP, 226 Physics Building, MICROEP UNIV OF ARKANSAS, FAYETTEVILLE, AR, 72701, United States
K. Sablon
Affiliation:
ksablon@uark.edu, UNIVERSITY OF ARKANSAS, MICROEP, 226 Physics Building, MICROEP UNIV OF ARKANSAS, FAYETTEVILLE, AR, 72701, United States
N. W. Strom
Affiliation:
nsgra5@gmail.com, UNIVERSITY OF ARKANSAS, MICROEP, 226 Physics Building, MICROEP UNIV OF ARKANSAS, FAYETTEVILLE, AR, 72701, United States
G. J. Salamo
Affiliation:
salamo@comp.uark.edu, UNIVERSITY OF ARKANSAS, Department of Physics, Department of Physics, University of Arkansas, FAYETTEVILLE, AR, 72701, United States
Get access

Abstract

Self-assembled InAs quantum dot clusters (QDCs) and InGaAs QD molecules (QDMs) have been demonstrated through a growth technique called “droplet epitaxy” by molecular beam epitaxy (MBE). For QDCs, the size and density of QDs can be controlled with variation of InAs monolayer coverages. For QDMs, Ga contribution from GaAs mound with the interaction of InAs deposition resulted in various number of InGaAs QDs per GaAs mound, ranging from 2 to 6 (bi-QDMs to hexa-QDMs) depending on the specific InAs monolayer deposition. High step density on sidewall of GaAs mound and anisotropy of surface diffusion gave a rise to preferential formation of InAs and InGaAs QDs around GaAs mounds. This hybrid growth approach combining droplet epitaxy and typical QD growth is relatively simple and flexible and doesn't require further ex-situ surface preparation. This approach of QD arrangement can find applications in optoelectronics as well as physical study of QD interaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. DiVincenzo David, P. Science 2005, 309, 2173.Google Scholar
2. Mowbray, D J and Skolnick, M S J. Phys. D: Appl. Phys. 2005, 38, 2059.Google Scholar
3. Brian, Julsgaard; Jacob, Sherson; Ignacio, Cirac J.; Fiurá, šek Jaromír; Polzik, Eugene S. Nature 2004, 432, 482.Google Scholar
4. Zongyou, Yin; Xiaohong, Tang; Jinghua, Zhao; Sentosa, Deny J. Appl. Phys. 2006, 99, 124306.Google Scholar
5. Tetsuya, Matsuura, Tomoyuki, Miyamoto, Fumio, Koyama Appl. Phys. Lett. 2006, 88, 183109.Google Scholar
6. Koguchi, N., Ishige, K. and Tsukamoto, S., MRS Symposium Proceedings 1994, 326, 269.Google Scholar
7. Lee, J. H., Wang, Zh. M., AbuWaar, Z. Y., Strom, N. W. and Salamo, G. J., Nanotechnology 2006, 17, 3973.Google Scholar
8. Kima), Jong Su and Koguchi, Nobuyuki, Appl. Phys. Lett. 2004, 85, 5893.Google Scholar
9. Lee, J. H., Wang, Zh. M., Liang, B. L., Sablon, K. A., Strom, N. W., and Salamo, G. J., Semiconductor Science and Technology 2006, 21, 1547.Google Scholar
10. Liang, B.L., Wang, Zh.M., Lee, J.H., Sablon, K., Mazur, Yu. I., Salamo, G. J., Appl. Phys. Lett. 2006, 89, 043113.Google Scholar
11. Lee, J. H., Wang, Zh. M., Strom, N. W., Mazur, Yu. I. and Salamo, G. J., Appl. Phys. Lett. 2006, 89, 202101.Google Scholar
12. Leonard, Broekmana; Robert, Leckeya; John, Rileya; Brian, Usherb; Brett, Sextonc Surface Science 1995, 331–333, 1115.Google Scholar
13. Laukkanen, P.; Kuzmin, M.; Perälä, R. E.; Ahola, M.; Mattila, S.; Väyrynen, I. J. Phys. Rev. B 2005, 72, 045321.Google Scholar
14. Wang, Zh M, Lee, J. H., Liang, B L, Black, W T, Kunets, Vas P, Mazur, Yu I, and Salamo, G J, Appl. Phys. Lett. 2006, 88, 233102.Google Scholar
15. Zongyou, Yin; Xiaohong, Tang; Jinghua, Zhao; Sentosa, Deny J. Appl. Phys. 2006, 99, 124306.Google Scholar