Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T10:09:22.075Z Has data issue: false hasContentIssue false

A Novel Nanoparticle/Lamellar Oxide Hybrid: TiO2-pillared MoO3

Published online by Cambridge University Press:  11 February 2011

Seung-Min Paek
Affiliation:
National Nanohybrid Materials Laboratory, School of Chemistry and Molecular Engineering, Seoul National University, Seoul, 151–747, South Korea
Hyun Jung
Affiliation:
National Nanohybrid Materials Laboratory, School of Chemistry and Molecular Engineering, Seoul National University, Seoul, 151–747, South Korea
Jin-Ho Choy
Affiliation:
National Nanohybrid Materials Laboratory, School of Chemistry and Molecular Engineering, Seoul National University, Seoul, 151–747, South Korea
Get access

Abstract

The intercalation into MoO3 with TiO2 nanoparticles has been accomplished via the exfoliating-restacking route. The molybdenum oxide lithiated by LiBH4 is exfoliated in degassed and deionized water. And subsequent restacking of exfoliated MoO3 in the TiO2 nanoparticle solution results in TiO2-pillared MoO3. X-ray diffraction pattern indicates that the TiO2 nanoparticles are successfully intercalated in the interlayer of MoO3. The interlayer expansion of MoO3 with the Ad value of 11.2 Å is consistent with the size of TiO2 nanoparticle. Well-defined (00l) reflections reveal highly ordered lamellar character of TiO2-pillared MoO3. The pre-edge feature in the X-ray absorption spectrum of the TiO2-pillared MoO3 confirms that guest TiO2 in the interlayer of MoO3 is pillared in the form of anatase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Elder, S. H., Cot, F. M., Heald, S. M., Tyryshkin, A. M., Bowman, M. K., Gao, Y., Joly, A. G., Balmer, M. L., Kolwaite, A. C., Magrini, K. A. and Blake, D. M., J. Am. Chem. Soc. 122, 5138 (2000)Google Scholar
2. Divigalpitiya, W. M. R., Frindt, R. F. and Morrison, S. R., Science 246, 369 (1989)Google Scholar
3. Wang, L., Schindler, J., Kannewurf, C. R. and Kanatzidis, M. G., J. Mater. Chem. 7, 1277 (1997)Google Scholar
4. Scolan, E. and Sanchez, C., Chem. Mater. 10, 3217 (1998)Google Scholar
5. Choy, J. H., Jung, H., Han, Y. S., Yoon, J. B., Shul, Y. G. and Kim, H. J., Chem. Mater. 14, 3823 (2002)Google Scholar
6. Anderson, G. and Magneli, A., Acta. Chem. Scand. 4, 793 (1950)Google Scholar
7. Luca, V., Djajanti, S. and Howe, R. F., J. Phys. Chem. B 102, 10650 (1998)Google Scholar