Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T00:55:09.636Z Has data issue: false hasContentIssue false

Novel Nanostructured Photoelectrodes - Electrodeposition of Metal Oxides onto Transparent Conducting Oxide Nanofibers

Published online by Cambridge University Press:  31 January 2011

Rainer Ostermann
Affiliation:
rainer.ostermann@phys.chemie.uni-giessen.de, Justus Liebig University, Institute of Physical Chemistry, Giessen, Germany
Melanie Rudolph
Affiliation:
melanie.Rudolph@materialwiss.uni-giessen.de, Justus Liebig University, Institute of Applied Physics, Giessen, Germany
Derck Schlettwein
Affiliation:
Derck.Schlettwein@ap.physik.uni-giessen.de, Justus Liebig University, Institute of Applied Physics, Giessen, Germany
Bernd M Smarsly
Affiliation:
bernd.smarsly@phys.Chemie.uni-giessen.de, Justus Liebig University, Institute of Physical Chemistry, Giessen, Germany
Get access

Abstract

Nanostructured metal oxides with high surface areas have been shown to be efficient photoelectrodes for light-to-energy conversion in dye-sensitized solar cells (DSCs). In this work we demonstrate the use of nanofibrous mats of transparent conducting oxides (TCOs) as nanostructured electrodes, especially for DSCs. The nanofibers have been obtained by electrospinning suitable inorganic precursors and polymers, followed by calcination to remove the polymer. Afterwards, TiO2 layers were generated on our 3D-electrodes by electrodeposition. An improved performance as DSC was found compared to flat electrodes of similar thickness, validating our approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Minami, T. Semiconductor Science and Technology, 2005, 20, S35S44.Google Scholar
2 Edwards, P. P. Porch, A. Jones, M. O. Morgan, D. V. und Perks, R. M. Dalton Trans., 2004, 29953002.Google Scholar
3 Granqvist, C. G. Applied Physics A: Materials Science & Processing, 1993, 57, 1924.Google Scholar
4 Fortunato, E. Ginley, D. Hosono, H. und Paine, D. C. MRS Bulletin, 2007, 32, 242247.Google Scholar
5 Chappel, S. Grinis, L. Ofir, A. und Zaban, A. The Journal of Physical Chemistry B, 2005, 109, 16431647.Google Scholar
6 Grinis, L. Ofir, A. Dor, S. Yahav, S. und Zaban, A. Israel Journal of Chemistry, 2008, 48, 269275.Google Scholar
7 Joanni, E. Savu, R. Góes, M. D. S., Bueno, P. R. Freitas, J. N. D. Nogueira, A. F. Longo, E. und Varela, J. A. Scripta Materialia, 2007, 57, 277280.Google Scholar
8 Wang, H. Ting, C. Hung, M. Chiou, C. Liu, Y. Liu, Z. Ratinac, K. R. und Ringer, S. P. Nanotechnology, 2009, 20, 055601.Google Scholar
9 Kavan, L. O'Regan, B., Kay, A. und Graetzel, M. Journal of Electroanalytical Chemistry, 1993, 346, 291307.Google Scholar
10 Wessels, K. Feldhoff, A. Wark, M. Rathousky, J. und Oekermann, T. Electrochemical and Solid State Letters, 2006, 9, C93–C96.Google Scholar
11 Eppler, A. M. Ballard, I. M. und Nelson, J. Physica E, 2002, 14, 197202.Google Scholar
12 Jongh, P. E. de und Vanmaekelbergh, D. Phys. Rev. Lett., 1996, 77, 3427.Google Scholar