Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T08:56:13.999Z Has data issue: false hasContentIssue false

A Novel Nanotube-on-Insulator (NOI) Approach toward Single-Walled Carbon Nanotube Devices

Published online by Cambridge University Press:  01 February 2011

Xiaolei Liu
Affiliation:
liux@usc.edu, University of Southern California, Department of Electrical Engineering - Electrophysics, Los Angeles, CA, 90007, United States
Song Han
Affiliation:
songh@usc.edu, University of Southern California, Department of Electrical Engineering - Electrophysics, Los Angeles, CA, 90007, United States
Daihua Zhang
Affiliation:
daihuaz@usc.edu, University of Southern California, Department of Electrical Engineering - Electrophysics, Los Angeles, CA, 90007, United States
Koungmin Ryu
Affiliation:
koungryu@usc.edu, University of Southern California, Department of Electrical Engineering - Electrophysics, Los Angeles, CA, 90007, United States
Chongwu Zhou
Affiliation:
chongwuz@usc.edu, University of Southern California, Department of Electrical Engineering - Electrophysics, Los Angeles, CA, 90007, United States
Get access

Abstract

We present a novel nanotube-on-insulator (NOI) approach to produce high-yield nanotube devices based on aligned single-walled carbon nanotubes. First, we managed to grow aligned nanotube arrays with controlled density on crystalline, insulating sapphire substrates, which bear analogy to industry-adopted silicon-on-insulator substrates. Based on the nanotube arrays, we demonstrated registration-free fabrication of both top-gated and polymer-electrolyte-gated field-effect transistors with minimized parasitic capacitance. In addition, we have successfully developed a way to transfer these aligned nanotube arrays to flexible substrates. Our approach has great potential for high-density, large-scale integrated systems based on carbon nanotubes for both micro- and flexible electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Iijima, S.; Ichihashi, T. Nature 1993, 363, 603605.Google Scholar
2 Dresselhaus, M. S.; Dresselhaus, G.; Avouris, Ph. Carbon Nanotubes: Synthesis, Structure, Properties and Applications; Springer: 2001.Google Scholar
3 Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Nature(London) 1998, 393, 4952.Google Scholar
4 Appenzeller, J.; Knoch, J.; Derycke, V.; Martel, R.; Wind, S.; Avouris, Ph. Phys. Rev. Lett. 2002, 89, 126801.Google Scholar
5 Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; McIntyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. Nat. Mater. 2002, 1, 241246.Google Scholar
6 Rosenblatt, S.; Yaish, Y.; Park, J.; Gore, J.; Sazonova, V.; and McEuen, P. L. Nano Lett. 2002, 2, 869872.Google Scholar
7 Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Nature(London) 2003, 424, 654657.Google Scholar
8 Wind, S. J.; Appenzeller, J.; Avouris, Ph. Phys. Rev. Lett. 2003, 91, 58301.Google Scholar
9 Kong, J.; Soh, H. T.; Cassell, A. M.; Quate, C. F.; Dai, H. J. Nature 1998, 395, 878881.Google Scholar
10 Song, H.; Liu, X.; Zhou, C. J. Am. Chem. Soc. 2005, 127, 52945295.Google Scholar
11 Shahidi, G. G. IBM J. Res. & Dev. 2002, 46, 121131.Google Scholar
12 Javey, A.; Wang, Q.; Ural, A.; Li, Y.; Dai, H. Nano Lett. 2002, 2, 929932.Google Scholar
13 Collins, P. C.; , Arnold; M. S., Avouris P Science, 2001, 292, 706709.Google Scholar
14 Lu, C.; Fu, Q.; Huang, S.; Liu, J. Nano Lett. 2004, 4, 623627.Google Scholar
15 Kocabas, C.; Meitl, M. A.; Gaur, A.; Shim, M.; Rogers, J. A. Nano Lett. 2004, 4, 24212426.Google Scholar
16 Bradley, K.; Gabriel, J.-P. P.; Grüner, G Nano Lett. 2003, 3, 13531355.Google Scholar
17 Li, Y; Kim, W.; Zhang, Y.; Rolandi, M.; Wang, D.; Dai, H. J. Phys. Chem. B 2001, 105, 1142411431.Google Scholar