Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T09:36:43.219Z Has data issue: false hasContentIssue false

Novel Solution Process for Fabricating Ultra-Thin-Film Absorber Layers in Fe2SiS4 and Fe2GeS4 Photovoltaics

Published online by Cambridge University Press:  22 May 2014

Samuel A. Orefuwa
Affiliation:
Department of Chemistry, Delaware State University, 1200 N. DuPont Highway,Dover, DE, U.S.A.
Cheng-Yu Lai
Affiliation:
Department of Chemistry, Delaware State University, 1200 N. DuPont Highway,Dover, DE, U.S.A.
Kevin Dobson
Affiliation:
Institute of Energy Conversion, University of Delaware, 451 Wyoming Road, Newark, DE 19716, U.S.A.
Chaoying Ni
Affiliation:
University of Delaware, Newark, DE 19716, U.S.A.
Daniela Radu*
Affiliation:
Department of Chemistry, Delaware State University, 1200 N. DuPont Highway,Dover, DE, U.S.A.
*
*Corresponding author Email: dradur@desu.edu
Get access

Abstract

Fe2SiS4 and Fe2GeS4 crystalline materials posses direct bandgaps of ∼1.55 and ∼1.4 eV respectively and an absorption coefficient larger than 105 cm–1; their theoretical potential as solar photovoltaic absorbers has been demonstrated. However, no solar devices that employ either Fe2SiS4 or Fe2GeS4 have been reported to date. In the presented work, nanoprecursors to Fe2SiS4 and Fe2GeS4 have been fabricated and employed to build ultra-thin-film layers via spray coating and rod coating methods. Temperature-dependent X-Ray diffraction analyses of nanoprecursors coatings show an unprecedented low temperature for forming crystalline Fe2SiS4 and Fe2GeS4. Fabricating of ultra-thin-film photovoltaic devices utilizing Fe2SiS4 and Fe2GeS4 as solar absorber material is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Todorov, T. K., Tang, J., Bag, S., Gunawan, O., Gokmen, T., Zhu, Y. and Mitzi, D. B., Advanced Energy Materials 3(1), 3438 (2013).10.1002/aenm.201200348CrossRefGoogle Scholar
Steinhagen, C., Harvey, T. B., Stolle, C. J., Harris, J. and Korgel, B. A., The Journal of Physical Chemistry Letters 3(17), 23522356 (2012).10.1021/jz301023cCrossRefGoogle Scholar
Yu, L., Lany, S., Kykyneshi, R., Jieratum, V., Ravichandran, R., Pelatt, B., Altschul, E., Platt, H. A. S., Wager, J. F., Keszler, D. A. and Zunger, A., Advanced Energy Materials 1(5), 748753 (2011).10.1002/aenm.201100351CrossRefGoogle Scholar
Jieratum, V., Oregon State University (2012).Google Scholar
Johnson, L. K., Radu, D. R., Lai, C.-Y., Lu, M. and Malajovich, I., Patent No. WO2011066205A1 (2011).Google Scholar
Cao, Y., Denny, M. S., Caspar, J. V., Farneth, W. E., Guo, Q., Ionkin, A. S., Johnson, L. K., Lu, M., Malajovich, I., Radu, D., Rosenfeld, H. D., Choudhury, K. R. and Wu, W., Journal of the American Chemical Society 134(38), 1564415647 (2012).10.1021/ja3057985CrossRefGoogle Scholar
Radu, D. R., Caspar, J. V., Lu, M., Johnson, L. K., Cao, Y., Ionkin, A. S., Malajovich, I., Rosenfeld, H. D., Sun, F. and Tassi, N. G., Prepr. Symp. - Am. Chem. Soc., Div. Fuel Chem. 56 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.), 179 (2011).Google Scholar
Radu, D. R., Caspar, J. V., Lu, M., Johnson, L. K., Cao, Y., Ionkin, A. S., Malajovich, I., Rosenfeld, H. D., Sun, F. and Tassi, N. G., 2011 (unpublished).Google Scholar
Radu, D. R., Caspar, J. V., Johnson, L. K., Rosenfeld, H. D., Malajovich, I. and Lu, M., Patent No. WO2010135622A1 (2010).Google Scholar
Charlie, C. H. Leidholm ; Alison, Breeze; Chris, Sunderland; and Ki, W. Z., Don NREL report NREL/SR-5200–56501 (2012).Google Scholar
Vincent, H., Bertaut, E. F., Baur, W. H. and Shannon, R. D., Acta Crystallogr., Sect. B B32(6), 17491755 (1976).10.1107/S056774087600633XCrossRefGoogle Scholar