Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T19:36:18.932Z Has data issue: false hasContentIssue false

Novel spin-dimer system of a microporous polyborate NaCuB7O12.nH2O

Published online by Cambridge University Press:  26 February 2011

Jing Ju
Affiliation:
jujing@sspns.phys.tohoku.ac.jp, Tohoku University, Department of Physics, 6-3,Aramaki Aza-Aoba,Aoba-ku,Sendai 980-8578,, Graduate School of Science,Tohoku University,Japan, Sendai, 9808578, Japan, 81-22-795-6468, 81-22-795-6470
Juns Sasaki
Affiliation:
juns@ldp.phys.tohoku.ac.jp, Tohoku University, Sendai, 9808578, Japan
Naoki Toyota
Affiliation:
toyota-n@ldp.phys.tohoku.ac.jp, Tohoku University, Sendai, 9808578, Japan
Katsumi Tanigaki
Affiliation:
tanigaki@sspns.phys.tohoku.ac.jp, Tohoku University, Sendai, 9808578, Japan
Get access

Abstract

A new microporous polyborate, NaCuB7O12.nH2O, is synthesized using boric acid as a flux. It contains a 14-membered ring framework built up by CuO6 octahedra, BO4 tetrahedra and BO3 triangles. The spin-1/2 dimers of Cu2+ ions are connected by BO3 to form an infinite ladder along the b-axis. Magnetic susceptibility data between 2 and 330 K are presented, and the data are accurately fitted by theoretical predictions of Bleaney-Bowers for the spin-1/2 dimer, with J/kB = -153.8 K, and g = 1.98, where J is the intradimer exchange interaction constant and g is the Landé g factor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davis, M. E., Nature 417 (2002) 813.10.1038/nature00785Google Scholar
2. Taguchi, A., Schuth, F., Microporous and Mesoporous Materials, 77 (2005) 1.Google Scholar
3. Maspoch, D., Ruiz-Molina, D., Veciana, J., J. Mater. Chem. 14 (2004) 2713.10.1039/b407169gGoogle Scholar
4. Maspoch, D., Ruiz-Molina, D., Veciana, J., Chem. Soc. Rev. 36 (2007) 770.10.1039/b501600mGoogle Scholar
5. Chukhrov, F. V. et al. , Nature 278 (1971) 631.10.1038/278631a0Google Scholar
6. Turner, S., Buseck, P. R., Science 212 (1981) 1024.10.1126/science.212.4498.1024Google Scholar
7. Burns, R. G., Burns, V. M., Stockman, H. W., Am. Mineral. 68 (1983) 972.Google Scholar
8. Shen, Y. F. et al. , Science 260 (1993) 511.10.1126/science.260.5107.511Google Scholar
9. Cleitzer, C., Eur. J. Solid State Inorg. Chem. 28 (1991) 77.Google Scholar
10. Lii, H. W., J. Chem. Soc., Dalton Trans. (1996) 819.Google Scholar
11. Corbin, D. R., Whitney, J. F., Fultz, W. C., Stucky, G. D., Hedi, M. M., Chetham, A. K., Inorg. Chem. 25 (1986) 2280.Google Scholar
12. Feng, P., Bu, X., Stucky, G. D., Nature 388 (1997) 735.10.1038/41937Google Scholar
13. Rajic, N., Logar, N., Kaucic, V., Zeolites 15 (1995) 672.10.1016/0144-2449(95)00083-IGoogle Scholar
14. Bennett, J. M., Marcus, B. K., Innovation in Zeolite Materials Science, Elsevier, New York, 1988, p. 269.Google Scholar
15. Rajic, N., Ristic, A., Kaucic, V., Zeolites 17 (1996) 304.10.1016/0144-2449(96)00027-9Google Scholar
16. Soghominian, V., Chen, Q., Haushalter, R. C., Zubieta, J., J. O'Connor, Science 259 (1993) 1596.Google Scholar
17. Ferey, G., Chem. Mater. 13 (2001) 3084.10.1021/cm011070nGoogle Scholar
18. Chen, J., Jones, R. H., Natarajan, S., Hursthouse, M. H., Thomas, J. M., Angew. Chem., Int. Ed. 33 (1994) 639.10.1002/anie.199406391Google Scholar
19. Zhang, X. X., Chui, S. S.-Y. and Williams, I. D., J. Appl. Phys. 87 (2000) 6007.10.1063/1.372595Google Scholar
20. Choudhury, A., Neeray, S., Natarajan, S., Rao, C. N. R., J. Chem. Soc., Dalton Trans. (2002) 1535.10.1039/b108047bGoogle Scholar
21. Rowsell, J. L. C., Taylor, N. J., Nazar, L. F., J. Am. Chem. Soc. 124 (2002) 6522.10.1021/ja020106pGoogle Scholar
22. Yang, T., Li, G., You, L., Ju, J., Liao, F., Lin, J., Chem. Commun. 33 (2005) 4225.10.1039/b506901gGoogle Scholar
23. Kageyama, H., Yoshimura, K., Stern, R., Mushnikov, N. V., Onizuka, K., Kato, M., Kosuge, K., Slichter, C. P., Goto, T., Ueda, Y., Phys. Rev. Lett. 82 (1999) 3168.10.1103/PhysRevLett.82.3168Google Scholar
24. Bleaney, B., Bowers, K. D., Proc. R. Soc. London, Ser. A 214 (1952) 451.Google Scholar
25. Bonner, J. C., Blote, H. W. J., Bray, J. W., Jacobs, I. S., J. Appl. Phys. 50 (1979) 1810.10.1063/1.327177Google Scholar
26. Ruiz, E., Alemany, P., Alvarez, S., Cano, J., J. Am. Chem. Soc. 119 (1997) 1297.10.1021/ja961199bGoogle Scholar
27. Crawford, Van H., Richardson, H. W., Wasson, J. R., Hodgson, D. J., Hatfield, W. E., Inorg. Chem. 15 (1976) 2107.10.1021/ic50163a019Google Scholar
28. Ruiz, E., Alemany, P., Alvarez, S., Cano, J., Inorg. Chem. 36 (1997) 3683.10.1021/ic970310rGoogle Scholar
29. Mikuriya, M., kawa, H., Kida, S., Bull. Chem. Soc. Jpn. 55 (1982) 1086.10.1246/bcsj.55.1086Google Scholar
30. Handa, M., Idehara, T., Nakano, K., Kasuga, K., Mikuriya, M., Matsumoto, N., Kodera, M., Kida, S., Bull. Chem. Soc. Jpn. 65 (1992) 3241.10.1246/bcsj.65.3241Google Scholar