Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-30T21:53:39.141Z Has data issue: false hasContentIssue false

Novel Strategies for the Preparation of TiO2 Nanofibers

Published online by Cambridge University Press:  01 February 2011

Kenneth J. Balkus Jr
Affiliation:
Department of Chemistry and the UTD NanoTech Institute, University of Texas at Dallas Richardson, TX 75083–0688, U.S.A.
Chunrong Xiong
Affiliation:
Department of Chemistry and the UTD NanoTech Institute, University of Texas at Dallas Richardson, TX 75083–0688, U.S.A.
Minedys Macias-Guzman
Affiliation:
Department of Chemistry and the UTD NanoTech Institute, University of Texas at Dallas Richardson, TX 75083–0688, U.S.A.
Get access

Abstract

The various polymorphs of titanium oxide (TiO2) are probably the most widely studied materials for photovoltaic applications. It is well known that composition and particles size can have a profound effect on photoactivity. It is thought that high surface to volume nanostructures such as nanofibers and nanorods may possess the optimal properties. We have developed technology for the preparation of TiO2 nanofibers in a variety of forms including core shell structures, papers and films. The formation of mesoporous TiO2 fibers as spider webs and papers has been achieved by electrostatic deposition. The mesoporous fibers and other forms such as shaped particles and films have been employed as templates to grow TiO2 nanofibers in various configurations. The proposed research below will address the synthesis and characterization of the TiO2 fibers developed by these techniques

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Zhou, X.F., Chu, D.B., Wang, S.W., Lin, C.J., Tian, Z.Q., Mater. Res. Bull. 37, 1851 (2002).Google Scholar
2) Yuan, Z., Colomer, J., Su, B., Chem. Phys. Lett. 363, 362 (2002).Google Scholar
3) Wang, Z., Chen, J., Hu, X., Mater. Lett. 43, 87 (2000).Google Scholar
4) Jeon, S., Braun, P. V., Chem. Mater. 15, 1256 (2003).Google Scholar
5) Cozzoli, P.D., Kornowski, A., Weller, W., J. Am. Chem. Soc., 125, 14539 (2003).Google Scholar
6) Wu, J., Yu, C., J. Phys. Chem. B, 108 3377 (2004).Google Scholar
7) Li, D., Xia, Y., Nanolett., 3, 555 (2003).Google Scholar
8) Nomura, M., Meester, B., Schoonman, J., Kapteijn, F, Moulijn, J Chem. Mater. 15, 1283 (2003).Google Scholar
9) Alberius, P., Frindell, K., Hayward, R., Kramer, E., Stucky, G., Chmelka, B., Chem. Mater. 14, 3284 (2002).Google Scholar
10) Yang, P., Zhao, D., Margolese, D., Chmelka, B.F., Stucky, G.D., Chem. Mater. 11, 2813 (1999).Google Scholar
11) Yue, Y., Gao, Z., Chem. Commun. 1755 (2000).Google Scholar
12) Hwang, Y.K., Lee, K.C., Kwon, Y.U., Chem. Commun. 1738 (2001).Google Scholar
13) Yoshitake, H., Sugihara, T., Tatsumi, T., Chem. Mater. 14, 1023 (2002).Google Scholar
14) Kim, K., Benkstein, K.D., Lagemaat, J.V., Frank, A.J., Chem. Mater. 12, 1042 (2002).Google Scholar
15) Lee, D.S., Liu, T.K., J. Sol-gel. Sci. Technol. 25, 121 (2002).Google Scholar
16) de, G.J., Soler-Illia, A.A., Grasso, D., Crepaldi, E.L., Cagnol, F., Sanchez, C., Mat. Res. Soc. Symp. Proc. 726, Q7.3.1 (2002).Google Scholar
17) O'Regan, B. and Grätzel, M. Nature 353, 737 (2003)Google Scholar
18) Nakade, S., Kubo, W., Kitamura, T., Wada, Y., Yanagida, S. J. Phys. Chem. B 107, 8607 (2003)Google Scholar
19) Wang, Z-S.; Kawauchi, H.; Arakawa, Kashima T., H. Coord Chem. Rev. 248, 1381 (2004)Google Scholar
20) Madhugiri, S., Sun, B., Smirniotis, P., Ferraris, J., Balkus, K. Jr, Micropor. Mesopor. Mater. 69, 77 (2004).Google Scholar
21) Zhang, M., Bando, Y., Wada, K., J. Mater. Sci. Lett., 20, 167 (2001).Google Scholar
22) Miao, L., Tanemura, S., Toh, S., Kanecko, K., Tanemura, M., Appl. Surf. Sci. 238, 175 (2004).Google Scholar
23) Lakshmi, B.B., Dorhout, P.K., Martin, C.R., Chem. Mater. 9, 857 (1997).Google Scholar
24) Limmer, S., Hubler, T.L., Cao, G., J. Sol-Gel Sci Tech., 26, 577 (2003).Google Scholar
25) Coutinho, D., Orozio, R., Reidy, R., Balkus, K. Jr, Micropor. Mesopor. Mater. 54, 229 (2002).Google Scholar
26) Zhao, D., Sun, J., Li, Q., Stucky, G. D., Chem. Mater. 12, 275 (2000)Google Scholar
27) Macias, M., Chacko, A., Balkus, K.J. Jr, Submitted.Google Scholar
28) Madhugiri, S., Dalton, A, Ferraris, J., Balkus, K.J. Jr, J. Am. Chem. Soc., 125, 14531 (2003).Google Scholar