Published online by Cambridge University Press: 16 May 2013
A ZnO single crystal is a native substrate for epitaxial growth of high-quality thin films of ZnO-based Group II-oxides (e.g. ZnO, ZnMgO, ZnCdO) for variety of devices, such as UV and visible-light emitting diodes (LEDs), UV laser diodes and solar-blind UV detectors. Currently, commercially available ZnO single crystal wafers are produced using a hydrothermal technique. The main drawback of hydrothermal growth technique is that the ZnO crystals contain large amounts of alkaline metals, such as Li and K. These alkaline metals are electrically active and hence can be detrimental to device performances. In this paper, results from a recently developed novel growth technique for ZnO single crystal boules are presented. Lithium-free ZnO single crystal boules of up to 1 inch in diameter was demonstrated using the novel technique. Results from crystal growth and materials characterization will be discussed.