Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T02:36:16.007Z Has data issue: false hasContentIssue false

Nucleation Rate of Capillary Bridges Between Multi-Asperity Surfaces

Published online by Cambridge University Press:  13 February 2014

Emrecan Soylemez
Affiliation:
Mechanical Engineering Department, Carnegie Mellon University, Pittsburgh, PA, U.S.A.
Maarten P. de Boer
Affiliation:
Mechanical Engineering Department, Carnegie Mellon University, Pittsburgh, PA, U.S.A.
W. Robert Ashurst
Affiliation:
Department of Chemical Engineering, Auburn University, Auburn, AL, U.S.A.
Get access

Abstract

A microcantliever based crack healing experiment is described and utilized in order to study the capillary nucleation rate for typical MEMS surfaces. An advanced test chamber that allows exquisite environmental control is also described and used in this study. Crack healing experiments prove to be a viable experimental technique to investigate the dynamics of capillary nucleation. The effective capillary nucleation time for the multi-asperity surface of microcantilever samples appears to increase logarithmically with adhesion energy.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Halsey, T. and Levine, A., Phys. Rev. Lett. 80, 3141 (1998).CrossRefGoogle Scholar
Crassous, J., Bocquet, L., Ciliberto, S., and Laroche, C., Europhys. Lett. 47, 562 (1999).CrossRefGoogle Scholar
Qian, J. and Gao, H., Acta Biomater. 2, 51 (2006).CrossRefGoogle Scholar
Mate, C.M., J. Appl. Phys. 72, 3084 (1992).CrossRefGoogle Scholar
Bachmann, J. and van der Ploeg, R.R., J. Plant Nutr. Soil Sci. 165, 468 (2002).3.0.CO;2-G>CrossRefGoogle Scholar
Rozhok, S., Piner, R., and Mirkin, C.A., J. Phys. Chem. B 107, 751 (2003).CrossRefGoogle Scholar
Lazzer, A. de, Dreyer, M., and Rath, H.J., Langmuir 15, 4551 (1999).CrossRefGoogle Scholar
Mastrangelo, C.H. and Hsu, C.H., J. Microelectromechanical Syst. 2, (1993).Google Scholar
Fisher, L.R. and Israelachvili, J.N., J. Colloid Interface Sci. 80, 528 (1981).CrossRefGoogle Scholar
Asay, D.B., Dugger, M.T., Ohlhausen, J.A., and Kim, S.H., Langmuir 24, 155 (2008).CrossRefGoogle Scholar
Adamson, A.W. and Gast, A.P., Physical Chemistry of Surfaces, Sixth (A Wiley-Interscience Publication, 1997), pp. 5354.Google Scholar
Israelachvili, J.N., Intermolecular and Surface Forces, Second Edi (Academic Press, 1992).Google Scholar
de Boer, M.P. and de Boer, P.C.T., J. Colloid Interface Sci. 311, 171 (2007).CrossRefGoogle Scholar
Thomson, W., Proc. R. Soc. Edinburgh 7, 63 (1870).CrossRefGoogle Scholar
Carpick, R.W., Batteas, J., and de Boer, M.P., Scanning Probe Studies of Nanoscale Adhesion Between Solids in the Presence of Liquids and Monolayer Films (Springer, 2007), pp. 951980.Google Scholar
Kohonen, M.M. and Christenson, H.K., 7285 (2000).CrossRefGoogle Scholar
Xiao, X. and Qian, L., Langmuir 16, 8153 (2000).CrossRefGoogle Scholar
Butt, H.-J. and Kappl, M., Adv. Colloid Interface Sci. 146, 48 (2009).CrossRefGoogle Scholar
Choi, H.J., Kim, J.Y., Hong, S.D., Ha, M.Y., and Jang, J., Mol. Simul. 35, 466 (2009).CrossRefGoogle Scholar
Maeda, N., Israelachvili, J.N., and Kohonen, M.M., Proc. Natl. Acad. Sci. U. S. A. 100, 803 (2003).CrossRefGoogle Scholar
Kohonen, M., Maeda, N., and Christenson, H., Phys. Rev. Lett. 82, 4667 (1999).CrossRefGoogle Scholar
Sirghi, L., Langmuir 28, 2558 (2012).CrossRefGoogle Scholar
Restagno, F., Bocquet, L., and Biben, T., Phys. Rev. Lett. 84, 2433 (2000).CrossRefGoogle Scholar
Maeda, N. and Israelachvili, J.N., J. Phys. Chem. B 106, 3534 (2002).CrossRefGoogle Scholar
Sung, B., Kim, J., Stambaugh, C., Chang, S.-J., and Jhe, W., Appl. Phys. Lett. 103, 213107 (2013).CrossRefGoogle Scholar
Sinclair, M.B., de Boer, M.P., and Corwin, A.D., Appl. Opt. 44, 7714 (2005).CrossRefGoogle Scholar
Soylemez, E., Plass, R. a, Ashurst, W.R., and de Boer, M.P., Rev. Sci. Instrum. 84, 075006 (2013).CrossRefGoogle Scholar
Sniegowski, J.J. and de Boer, M.P., Annu. Rev. Mater. Sci. 30, 299 (2000).CrossRefGoogle Scholar
Mulhern, G.T., Soane, D.S., and Howe, R.T., Proc. Transducers 296 (1993).Google Scholar
de Boer, M.P., Exp. Mech. 47, 171 (2007).CrossRefGoogle Scholar