Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T07:54:53.707Z Has data issue: false hasContentIssue false

Observation of Interdiffusion in ZnO/CuInSe2 Heterostructures and its Effect on Film Properties

Published online by Cambridge University Press:  21 March 2011

Ralf Hunger
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Energy Electronics Institute, Thin Film Solar Cells Group, Tsukuba, Ibaraki 305-8568, Japan
Paul Fons
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Energy Electronics Institute, Thin Film Solar Cells Group, Tsukuba, Ibaraki 305-8568, Japan
Kakuya Iwata
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Energy Electronics Institute, Thin Film Solar Cells Group, Tsukuba, Ibaraki 305-8568, Japan
Akimasa Yamada
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Energy Electronics Institute, Thin Film Solar Cells Group, Tsukuba, Ibaraki 305-8568, Japan
Koji Matsubara
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Energy Electronics Institute, Thin Film Solar Cells Group, Tsukuba, Ibaraki 305-8568, Japan
Shigeru Niki
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Energy Electronics Institute, Thin Film Solar Cells Group, Tsukuba, Ibaraki 305-8568, Japan
Ken Nakahara
Affiliation:
ROHM Co Ltd., Optical Device R&D Divison, Kyoto, Japan
Hidemi Takasu
Affiliation:
ROHM Co Ltd., Optical Device R&D Divison, Kyoto, Japan
Get access

Abstract

ZnO films were grown directly on epitaxial CuInSe2 (001) (CIS) by radical-source molecular beam epitaxy (RS-MBE). The substrate-film interdiffusion was investigated dependent on the ZnO growth temperature. Secondary Ion Mass Spectroscopy (SIMS) profiles indicate the mutual temperature-activated diffusion of Zn and In at a growth temperature of 440°C which is absent at 250°C. Zn indiffusion into the CIS substrate leads to characteristic changes in the photoluminescence (PL) properties, whereas the In outdiffusion into the growing ZnO film causes an increased carrier concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ramanathan, K., Wiesner, H., Asher, S. et al., Proc. 2nd World Conf. Photov. Solar Energy Conv., edited by Schmid, J. et al. (Stephens, 1999).Google Scholar
2. Nakada, T. and Mizutani, M., Proc. 28th IEEE Photov. Spec. Conf., Anchorage, AK, USA, (IEEE publishing, in press).Google Scholar
3. Yamada, A., Sugiyama, T., Chaisitsak, S. et al., Proc. 28th IEEE Photov. Spec. Conf., Anchorage, AK, USA, (IEEE publishing, in press).Google Scholar
4. Fons, P., Iwata, K., Yamada, A. et al., Appl. Phys. Lett. 77 (12), 1801 (2000).Google Scholar
5. Niki, S., Makita, Y., Yamada, A. et al., Journal of Crystal Growth 150, 1201 (1995).Google Scholar
6. Niki, S., Kurafuji, T., Fons, P.J. et al., Mat. Res. Soc. Symp. Proc. 426, 233 (1996).Google Scholar
7. Fons, P., Niki, S., Yamada, A. et al., Mat. Res. Soc. Symp. Proc. 399, 549 (1996).Google Scholar
8. Hunger, R., Fons, P., Yamada, A., and Niki, S., (unpublished).Google Scholar
9. Kimura, R., Mouri, T., Nakada, T. et al., Jap. J. Appl. Phys. 8 (Part 2,No. 3B), L289 (1999).Google Scholar
10. Zhang, S.B., Wei, S.-H., Zunger, A. et al., Phys. Rev. B 57(16), 9642 (1998).Google Scholar
11. Fons, P., Hunger, R., Niki, S. et al., (unpublished).Google Scholar
12. Ueng, H. Y. and Hwang, H. L., J. Phys. Chem. Solids 51(1), 11 (1990).Google Scholar
13. Schoen, J. H., Schenker, O., Riazi-Nejad, H. et al., phys. stat. sol. (a) 161, 301 (1997).Google Scholar
14. Chichibu, S., Shirakata, S., Isomura, S. et al., Jpn. J. Appl. Phys. 32, 531 (1993), Suppl 32-3.Google Scholar