Article contents
Observation of Midgap States in GaN with Optical-Isothermal Capacitance Transient Spectroscopy
Published online by Cambridge University Press: 10 February 2011
Abstract
Optical-isothermal capacitance transient spectroscopy (O-ICTS) was used to distinguish the deep levels which occur in unintentionally doped n-type GaN by means of their characteristic optical cross section. GaN grown by metalorganic vapor phase epitaxy (MOVPE) and hydride vapor phase epitaxy (HVPE) were compared. Correspondence between optical and thermal emission characteristics of previously discovered levels, E2 (∼Ec-0.55 eV) and E4 (∼EC-1.0 eV), were clearly determined by observing their sequential appearance in the ICTS spectra. Whether by thermal or optical stimulation, the emission from E4 was found to be broad in nature; it is consequently believed to involve a defect. The total measured concentration of deep levels, including a prominent level which photoionizes in the range 2.5 to 3.0 eV below the conduction band, is greater in the GaN grown by MOVPE than by HVPE that was tested.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
REFERENCES
- 1
- Cited by