Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T23:26:42.118Z Has data issue: false hasContentIssue false

Observation of pseudoelastic behavior in large Cu-Ni composite multilayer nanowires

Published online by Cambridge University Press:  20 February 2014

N. Abdolrahim
Affiliation:
School of Mechanical and Materials Engineering Washington State University, Pullman, WA 99164
I.N. Mastorakos
Affiliation:
School of Mechanical and Materials Engineering Washington State University, Pullman, WA 99164
D. Bahr
Affiliation:
School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette IN 47907-2045
H.M. Zbib
Affiliation:
School of Mechanical and Materials Engineering Washington State University, Pullman, WA 99164
Get access

Abstract

In recent years, studies have shown that single crystal metallic nanowires (NWs) can exhibit unique pseudoelastic behavior when their cross-sectional area is smaller than a certain critical value, which is on the order of a few nms. The mechanism responsible for this behavior is the formation of partial dislocations (twinning). In this paper we demonstrate using molecular dynamics simulations that thicker composite nanowires can exhibit pseudoelastic behavior at large cross-sectional dimensions to 28 nm and higher, as long as the individual layer thickness do not exceed a critical value of 1.8-2 nm, thus making their manufacturing feasible and more attractive.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mastorakos, I.N., Zbib, H.M., Bahr, D.F., Parsons, J., and Faisal, M.. Appl. Phys. Lett., 94, 2009.Google Scholar
Abdolrahim, N., Mastorakos, I.N., and Zbib, H.M.. Phys. Rev. B, 81, 2010.CrossRefGoogle Scholar
Mastorakos, I.N., Abdolrahim, N., and Zbib, H.M., International Journal of Mechanical Sciences, 52:295, 2010.CrossRefGoogle Scholar
Craighead, H.G.. Science, 290:1532, 2000.CrossRefGoogle Scholar
Husain, A., Hone, J., Postma, H.W.C., Huang, X.M.H., Drake, T., Barbic, M., Scherer, A., and Roukes, M.L.. Appl. Phys. Lett., 83:1240, 2003.CrossRefGoogle Scholar
Diao, J.K., Gall, K., and Dunn, M.L.. Phys. Rev. B, 70, 4 2004.CrossRefGoogle Scholar
Zheng, H., Cao, A.J., Weinberger, C.R., Huang, J.Y., Du, K., Wang, J.B., Ma, Y.Y., Xia, Y.N., and Mao, S.X.. Nature Communications, 1, 2010.Google Scholar
Lao, J.J. and Moldovan, D.. Appl. Phys. Lett., 93, 2008.CrossRefGoogle Scholar
McDowell, M.T., Leach, A.M., and Gaill, K.. Nano Letters, 8:3613, 2008.CrossRefGoogle Scholar
Zhang, Y.F. and Huang, H.C.. Nanoscale Research Letters, 4:34, 2009.CrossRefGoogle Scholar
Liang, W.W. and Zhou, M.. Journal of Engineering Materials and Technology-Transactions of the ASME, 127:423, 2005.CrossRefGoogle Scholar
Park, H.S., Gall, K., and Zimmerman, J.A.. Phys. Rev. Lett., 95, 2005.Google Scholar
Liang, W.W. and Zhou, M.. Phys. Rev. B, 73, 2006.Google Scholar
Liang, W.W., Srolovitz, D.J., and Zhou, M.. Journal of the Mechanics and Physics of Solids, 55:1729, 2007.CrossRefGoogle Scholar
Ji, C.J. and Park, H.S.. Appl. Phys. Lett., 89, 2006.Google Scholar
Ji, C.J. and Park, H.S.. Nanotechnology, 18, 2007.Google Scholar
Mastorakos, I.N., Abdolrahim, N., and Zbib, H.M.. International Journal of Mechanical Sciences, 52:295, 2010.CrossRefGoogle Scholar
Ma, F., Ma, S.L., Xu, K.W., and Chu, P.K.. Appl. Phys. Lett., 92, 2008.Google Scholar
Plimpton, S.J.. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys., 117:1{19, 1995}.CrossRefGoogle Scholar
Foiles, S. M., Baskes, M. I., and Daw, M. S.. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B, 33:7983{7991, Jun1986}.CrossRefGoogle ScholarPubMed
Voter, A.F.. Intermetallic Compounds, Principle and Practice. Wiley, 1993.Google Scholar
Ikeda, H., Qi, Y., Cagin, T., Samwer, K., Johnson, W.L., and Goddard, W.A.. Phys. Rev. Lett., 82:2900, 1999.CrossRefGoogle Scholar
Ma, F., Song, Z.X., Li, Y.H., and Xu, K.W.. Microelectronic Engineering, 87:426, 2010.CrossRefGoogle Scholar
Abdolrahim, N., Bahr, D.F., Revard, B., Reilly, C., Ye, J., Balk, T.J., and Zbib, H.M.. Philosophical Magazine, 93:736, 2013.CrossRefGoogle Scholar