Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T16:06:36.294Z Has data issue: false hasContentIssue false

Observation of Superheating of Si at the Si/SiO2 Interface in Pulsed-laser irradiated Si Thin Films

Published online by Cambridge University Press:  28 July 2015

J.J. Wang
Affiliation:
Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
A.B. Limanov
Affiliation:
Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
Ying Wang
Affiliation:
Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
James S. Im
Affiliation:
Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
Get access

Abstract

Substantial superheating of single-crystal Si films at and near the bottom Si/SiO2 interface was observed. This was accomplished via back-side irradiation of a (100) single-crystal Si film on a quartz substrate using an excimer-laser pulse. The spatiotemporal details of the melting transition were tracked in situ using surface-side and substrate-side transient reflectance measurements, and the one-dimensional thermal profile evolution within the solid film during the heating period was numerically computed using the experimentally extracted temporal profile of the incident beam and temperature-dependent optical and thermal parameters of the materials. A simple lower-bound estimation identifies that superheating in excess of 100 K was attained within Si along the bottom (100)-Si/SiO2 interface even at moderate beam energy densities.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Im, J.S., Kim, H.J., and Thompson, M.O., Appl. Phys. Lett. 63 1969 (1993)CrossRefGoogle Scholar
Sameshima, T. and Usui, S., Mat. Res. Soc. Symp. Proc. 71 435 (1986)CrossRefGoogle Scholar
Kim, H. J. and Im, J.S., Mat. Res. Soc. Symp. Proc., 321 665 (1994)CrossRefGoogle Scholar
Im, J.S., Chahal, M., van der Wilt, P.C., Chung, U.J., Ganot, G.S., Chitu, A.M., Kobayashi, N., Ohmori, K., and Limanov, A.B., J. Cryst. Growth 312 27752778 (2010)CrossRefGoogle Scholar
Im, J.S., Mater. Res. Soc. Symp. 1426 239 (2012)CrossRefGoogle Scholar
Van Gestel, D., Chahal, M., van der Wilt, P. C., Yu, Q., Gordon, I., Im, J.S., and Poortmans, J., 35th IEEE Photovoltaic Specialists Conference (PVSC) 279 (2010)Google Scholar
Gosain, D.P., Machida, A., Fujino, T., Hitsuda, Y., and Nakano, K., J. Sato, Jpn. J. Appl. Phys. 42 L135 (2003)CrossRefGoogle Scholar
Im, J.S. and Kim, H.J., Appl. Phys. Lett. 64 2303 (1994)CrossRefGoogle Scholar
Rie, E., Ph.D. Dissertation, University of Vienna (1920)Google Scholar
Meissner, F., Zeitschrift fur anorganische und allgemeine Chemie 110 169 (1920)CrossRefGoogle Scholar
Mei, Q.S. and Lu, K., Prog. Mater. Sci. 1175 (2007)Google Scholar
Kelton, K.F. and Greer, A.L., Nucleation in Condensed Matter, Pergamon press, 1st ed., 528 (2010)Google Scholar
Auston, D.H., Surko, C.M., Venkatesan, T.N.C., Slusher, R.E., and Golovchenko, J.A., Appl. Phys. Lett. 33 437 (1978)CrossRefGoogle Scholar
Atwater, H.A., Thompson, C.V., and Smith, H.I., J. Mater. Res. 3 1232 (1988)CrossRefGoogle Scholar
Macleod, H.A., Thin-Film Optical Filters, CRC Press 4th ed., Ch. 2 (2010)Google Scholar
Murakami, K., Kawabe, K., Gamo, K., Namba, S., and Aoyagi, Y., Phys. Lett. A 70 332 (1979)CrossRefGoogle Scholar
Desai, P.D., J. Phys. Chem. Ref. Data 15 967 (1986)CrossRefGoogle Scholar
Leonard, J.P., Ph.D. Dissertation, Columbia University (2000)Google Scholar
Kelley, K.K., U. S. Bureau Mines Bull. 584, Washington (1960)Google Scholar
Glassbrenner, C.J. and Slack, G.A., Phys. Rev. 134 4A A1058 (1969)CrossRefGoogle Scholar
Sergeev, O.A., Shashkov, A. G., and Umanskii, A. S., Thermophysical Properties of Quartz Glass, Plenum Publishing Corporation 1375 (1983)Google Scholar
Jellison, G.E. Jr., and Modine, F.A., J. Appl. Phys. 76 3758 (1994)CrossRefGoogle Scholar
Hurley, D.H., Khafizov, M., and Shinde, S.L., J. Appl. Phys. 109 083504 (2011)CrossRefGoogle Scholar
Lu, K. and Li, Y., Phys. Rev. Lett. 80, 4474 (1998)CrossRefGoogle Scholar
Frenken, J.W.M. and van der Veen, J.F., Phys. Rev. Lett. 54 134 (1985)CrossRefGoogle Scholar
Uhlmann, D.R., J. Non-Cryst. Mat. 41 347 (1980)CrossRefGoogle Scholar
Chahal, M., van der Wilt, P. C., Van Gestel, D., Limanov, A.B., Chitu, A.M., and Im, J.S., Mater. Res. Soc. Symp. Proc. 1426 257 (2012)CrossRefGoogle Scholar
Wang, J.J., Ph.D. Dissertation, Columbia University (2015) [Manuscript in preparation] Google Scholar