Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:11:16.717Z Has data issue: false hasContentIssue false

Obtaining Circularly Polarized Optical Spots Beyond the Diffraction Limit Using Plasmonic Nano-Antennas

Published online by Cambridge University Press:  31 January 2011

Erdem Ogut
Affiliation:
eogut@su.sabanciuniv.edu, Sabanci University, Istanbul, Turkey
Gullu Kiziltas
Affiliation:
gkiziltas@sabanciuniv.edu, Sabanci University, Istanbul, Turkey
Kursat Sendur
Affiliation:
sendur@sabanciuniv.edu, Sabanci University, Orhanli - Tuzla, Istanbul, 34956, Turkey, +90-216-4839527, +90-216-4839550
Get access

Abstract

With advances in nanotechnology, emerging plasmonic nano-optical applications, such as all-optical magnetic recording, require circularly-polarized electromagnetic radiation beyond the diffraction limit. In this study, a plasmonic cross-dipole nano-antenna is investigated to obtain a circularly polarized near-field optical spot with a size smaller than the diffraction limit of light. The performance of the nano-antenna is investigated through numerical simulations. In the first part of this study, the nano-antenna is illuminated with a diffraction-limited circularly-polarized radiation to obtain circularly polarized optical spots at nanoscale. In the second part, diffraction limited linearly polarized radiation is used. An optimal configuration for the nano-antenna and the polarization angle of the incident light is identified to obtain a circularly polarized optical spot beyond the diffraction limit from a linearly polarized diffraction limited radiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Volakis, J., Antenna Engineering Handbook (McGraw-Hill Professional, 2007).Google Scholar
2 Kikkawa, J. M. and Awschalom, D. D., Science 287, 473476 (2000).Google Scholar
3 Neale, S., Macdonald, M., Dholakia, K., and Krauss, T. F., Nature 4, 530533 (2005).Google Scholar
4 Matsuhisa, Y., Huang, Y., Zhou, Y., and Whu, S. T., Opt. Express 15, 626–622 (2007).Google Scholar
5 Hassey, R., Swain, E. J., Hammer, N. I., Venkataraman, D., and Barnes, M. D., Science 314, 14371439 (2006).Google Scholar
5 Peng, X., Komatsu, N., Bhattacharya, S., Shimawaki, T., Aonuma, S., Kimura, T., Osuka, A., Nature 2, 361365 (2007).Google Scholar
6 Yu, N., Wang, Q. Y., Pflugl, C., Diehl, L., Capasso, F., Edamura, T., Furuta, S., Yamanishi, M., and Kan, H., Appl. Phys. Lett. 94, 151101 (2009).Google Scholar
7 Stanciu, C. D. et al., Phys. Rev. Lett. 99, 047601 (2007).Google Scholar
8 Hohlfeld, J., Stanciu, C. D., and Rebei, A., Appl. Phys. Lett. 94, 152504 (2009).Google Scholar
9 Ohdaira, Y., Inoue, T., Hori, H., and Kitahara, K., Opt. Express 16, 29152921 (2008).Google Scholar
10 Grober, R. D., Schoelkopf, R. J., and Prober, D. E., Appl. Phys. Lett. 70, 13541356 (1997).Google Scholar
11 Sendur, K. and Challener, W., J. Microsc. 210, 279283 (2003).Google Scholar
12 Crozier, K. B., Sundaramurthy, A., Kino, G. S., and Quate, C. F., J. Appl. Phys. 94, 4632 (2003).Google Scholar
13 Fromm, D. P. et al., J. Appl. Phys. 4, 957 (2004).Google Scholar
14 Muhlschlegel, P. et al., Science 308, 16071609 (2005).Google Scholar
15 Novotny, L., Phys. Rev. Lett. 98, 266802, (2007).Google Scholar
16 Jackel, F., Kinkhabwala, A. A., and Moerner, W. E., Chem. Phys. Lett. 446, 339343 (2007).Google Scholar
17 Jin, E. X. and Xu, X., J. Comput. Theor. Nanosci. 5, 214218 (2008).Google Scholar
18 Sendur, K. and Baran, E., Appl. Phys. B 96, 325335 (2009).Google Scholar
19 Palik, E.D., Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998)Google Scholar
20 Novotny, L. and Hecht, B., Principles of Nano-Optics (Cambridge University Press, New York, 2006).Google Scholar