Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T07:03:47.899Z Has data issue: false hasContentIssue false

The Occurrence of Defects in Silicon Carbides as a Result of Processing Mode and Applied Stress

Published online by Cambridge University Press:  21 February 2011

C. H. Carter Jr.
Affiliation:
North Carolina State University, Raleigh, NC
J. Bentley
Affiliation:
North Carolina State University, Raleigh, NC Oak Ridge National Laboratory, Oak Ridge, TN
Robert F. Davis
Affiliation:
North Carolina State University, Raleigh, NC
Get access

Extract

Silicon carbide (SiC) possesses extreme hardness, very good electrical, thermal and mechanical properties as well as excellent resistance to corrosion and thermal shock. As such, it is one of the primary candidate materials for use in systems for the production and conversion of energy at elevated temperatures. It is currently employed in or being considered for use in heat exchangers or waste heat recouperators in various prototype fossile fuel systems. Specific examples of its potential use include (1) indirectly fired turbine engines wherein the turbine section is separated and protected from the combustor by a SiC heat exchanger; (2) coal fired systems which heat air in a fluidized bed containing a SiC heat exchanger; (3) coal gasifiers wherein the outlet channels will be of SiC because of the particle erosion, high temperatures (1673K) and pressures on these systems; (4) critical parts for gas turbines, the Sterling engine and adiabatic diesel engines; (5) high temperature bearings and (6) first wall materials for fusion reactors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baumhauer, H., Z. Krist 55, 249 (1915).Google Scholar
2. Krishna, P. and Verma, A.R., Proc. Roy Soc. (London) Ser. A. 272, 490 (1963).Google Scholar
3. Schneer, C.J., Acta Cryst. 8, 279 (1955).CrossRefGoogle Scholar
4. Jepps, N.W. and Page, T.F., to be published J. Crystal Growth (Krishna Special Edition) 1983.Google Scholar
5. Sawyer, G.R and Page, T.F., J. Materials Sci. 13, 885 (1978).CrossRefGoogle Scholar
6. Ogbuji, L.U., Mitchell, T.E. and Heuer, A.H., J. Materials Sci. 14, 2267 (1979).Google Scholar
7. Heuer, A.H., Fryburg, G.A., Ogbuji, L.U. and Mitchell, T.E., J. Am. Cer. Soc. 61, 406 (1978).Google Scholar
8. Lely, S.A., Ber. Dtsch. Keram. Ges. 32, 229 (1955).Google Scholar
9. Ryan, C.E., Marshall, R.C., Hauley, J.J., Berman, I., Considine, D.P., AFCRL-67–0436, Physical Sciences Research Paper #336, August, 1967.Google Scholar
10. Shagger, P.T.B., Mat. Res. Bull. 4, S104 (1969).Google Scholar
11. Il'in, V.A., Piryutko, M.M., Sorokin, N.D., Tairov, Yu. M. and Tsevtkov, V.G., Inoganic Matls. (English Transl.) 16, 699 (1980).Google Scholar
12. Nagatome, M., Ishiuara, H. and Furukawa, S., Jap. J. App. Phys. 18, 765 (1979).Google Scholar
13. Kieffer, A.R., Ettmayer, P., Gugel, E. and Schmidt, A. Inoganic Matls. (English Transl.) 16, 699 (1980)in p. S158.Google Scholar
14. Kamath, G.S., Inoganic Matls. (English Transl.) 16, 699 (1980)p. S60.Google Scholar
15. Shaffer, P.T.B., Mater. Res. Bull 4, 213 (1969).Google Scholar
16. Vodakov, Yu A. and Mokhov, E.N., in “Silicon Carbide 1973,” Marshall, R.C., Faust, J.W. Jr., and Ryan, C.E., ed. Univ. of South Carolina Press, Columbia, S.C., 1974, p. 508.Google Scholar
17. Batha, and Hardy, ,Univ. of South Carolina PressColumbia, S.C., 1974, p. 435 Google Scholar
18. Kingon, A.I., private communication.Google Scholar
19. Mitomo, M., Inomata, Y. and Kumanomido, M., Yogyo Kyokaishi 78, 224 (1970).Google Scholar
20. Lomakina, G.A., Vodakov, Yu.A., Mokhov, E.N., Oding, C.G. and Kholuyanov, G.F., Sov. Phys.-Solid State (Eng. Transl.) 12, 2356 (1971).Google Scholar
21. Schneider, G., “Gleichgeuichtsuntersuchungen in System Si,A1,Be,C,N,” Ph.D. Thesis, Stuttgart University, 1978.Google Scholar
22. Tajima, Y. and Kingery, W.D., Comm. Am. Cer. Soc, Feb. 1982, p. c-27.Google Scholar
23. Woodbury, H.H. and Ludwig, G.W., Phys. Rev. 124, 1083 (1961).CrossRefGoogle Scholar
24. Hardeman, G.E.G., J. Phys. Chem. Solids 24, 1223 (1963).Google Scholar
25. Choyke, W.J. and Partick, L., Phys. Rev. B 2, 4959 (1970).Google Scholar
26. Yamada, S. and Kuwabara, H. in Ref. 16, p 305.Google Scholar
27. Hagen, S.H. and van Kemenade, A.W.C., Phys. Status Solidi A 33, 97 (1976).Google Scholar
28. Reiss, H. and Fuller, C.S., Trans. AIME 206, 276 (1956).Google Scholar
29. Reiss, H., J. Chem. Phys. 21, 1209 (1953).CrossRefGoogle Scholar
30. Lely, J.A. and Kroeger, F.A., “Semiconductors and Phosphors,” Schoen, M. and Welker, H., eds., Wiley Interscience, New York (1958) p. 522.Google Scholar
31. Ghostagore, R.N. and Coble, R.L., Phys. Rev. 143, 623 (1966).Google Scholar
32. Hong, J.D. and Davis, R.F., J. Am. Ceram. Soc. 63, 546 (1980).Google Scholar
33. Hong, J.D. and Davis, R.F., J. Mat. Sc. 16, 2485 (1981).Google Scholar
34. Maslakovets, Yu.P., Moknov, E.N., Vodakov, Yu.A., and Lomakina, G.A., Sov. Phys-Solid State (Eng Transl), 10, 634 (1968).Google Scholar
35. Mokhov, E.N., Vodakov, Yu.A., Lomakina, G.A., Oding, V.G., Kholuyanov, G.F., and Semenov, V.V., “Diffusion of Boron in Silicon Carbide,” Sov. Phys.-Semicond. (Eng. Transl) 6 [3], 414 18 (1972).Google Scholar
36. Jepps, N.W. and Page, T.F., J. Am. Ceram. Soc. 64, C177.Google Scholar
37. Schwetz, K.A. and Lipp, A., “Proc. 10th Symp. Sc. Ceramics,” Hausner, H., ed., Deutsche Keram. Ges., p. 149 (1980).Google Scholar
38. Lauf, R.J., Braski, D.N. and Tennery, V.J., Oak Ridge National Laboratory Report ORNL/TM-6940, August 1979.Google Scholar