Published online by Cambridge University Press: 25 February 2011
Oxygen 0+ ions have been implanted into Si both at room temperature and liquid nitrogen temperature in order to determine the effect of implantation temperature on SiO2 formation. Samples were analysed by RBS with 1.5 MeV He+ ions. The implants of 0+ in Si were done at 150 keV with current densities of ≤10 μA/cm2. For doses of more than 1.5×1018 0+/cm2, in-situ RBS experiments positively indicate a 2:1 oxygen silicon ratio. Increased 0+ doses (for both room temperature and liquid nitrogen temperature) cause the Si02 layers to spread uniformly and symmetrically toward both the surface and the interior. From these results, it is apparent that excess oxygen diffuses toward Si/Si02 interfaces in our experimental situation even at liquid nitrogen temperature.