Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T13:59:07.896Z Has data issue: false hasContentIssue false

On the Nature of the Native Defect ESR in Thin Diamond Films

Published online by Cambridge University Press:  21 February 2011

J. Shinar
Affiliation:
Arnes Laboratory - USDOE, Iowa State University, Ames, Iowa 50011 Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
H. Jia
Affiliation:
Arnes Laboratory - USDOE, Iowa State University, Ames, Iowa 50011 Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
D. P. Lang
Affiliation:
Arnes Laboratory - USDOE, Iowa State University, Ames, Iowa 50011 Department of Chemistry, Iowa State University, Ames, IA 50011
M. Pruski
Affiliation:
Arnes Laboratory - USDOE, Iowa State University, Ames, Iowa 50011 Department of Chemistry, Iowa State University, Ames, IA 50011
Get access

Abstract

The X-band ESR of thin diamond films deposited from 99.5% H2/0.5% CH4 is compared to that of films similarly prepared from D2CD4 and H2/13CH4. The main line and the satellites at ±7.2 G are unaffected by annealing at T <. 1100°C, but their intensity is reduced upon annealing at T ∼ 1200°C. As the satellites are absent from the deuterated films, they are attributed to newly identified dangling bond-H centers, either on internal microvoid surfaces or embedded in the tetrahedral network. This is consistent with the 13C spin-lattice relaxation rate, which indicates that the distribution of paramagnetic centers is homogeneous to within ∼0.04 μm. However, they may be nonuniformly distributed on a finer scale, consistent with the concentrations in m ulti vacancies or stacking faults recently suggested by Fanciulli and Moustakas.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Glass, J. T., Messier, R., and Fujimori, N., editors, Diamond, Silicon Carbide, and Related Wide Bandgap Semiconductors (Mat. Res. Soc. Proc. 162, Pittsburgh, PA, 1990).Google Scholar
2. Moustakas, T. D., Pankove, J. I., and Hamakawa, Y., editors, Wide Band Gap Semiconductors (Mat. Res. Soc. Proc. 242, Pittsburgh, PA, 1992).Google Scholar
3. Watanabe, I. and Sugata, K., Jap. J. Appl. Phys. 27, 1808 (1988).Google Scholar
4. Hoinkis, M., Weber, E. R., Landstrass, M. I., Plano, M. A., Han, S., and Kania, D. R., Appl. Phys. Lett. 59, 1870 (1991).Google Scholar
5. Redwing, J. M., Root, T. W., and Banholzer, W. F., J. Appl. Phys. (submitted).Google Scholar
6. Jia, H., Shinar, J., Mitra, S., and Gleason, K. K., unpublished results.Google Scholar
7. Loubser, J. H. N. and van Wyk, J. A., Rep. Prog. Phys. 41, 1201 (1978).Google Scholar
8. Fanciulli, M. and Moustakas, T. D., Phys. Rev. B 48, 14982 (1993).Google Scholar
9. McNamara, K. M., Levy, D. H., Gleason, K. K., and Robinson, C. J., Appl. Phys. Lett. 60, 580 (1992).Google Scholar
10. McNamara, K. M., Gleason, K. K., and Robinson, C. J., J. Vac. Sci. Tech. A 10, 3143 (1992).Google Scholar
11. Levy, D. H. and Gleason, K. K., J. Phys. Chem. 96, 8125 (1992).Google Scholar
12. Mitra, S. and Gleason, K. K., Diamond and Related Materials 2, 126 (1993).Google Scholar
13. Jia, H., Shinar, J., Lang, D. P., and Pruski, M., Phys. Rev. B 48, 17595 (1993).Google Scholar
14. Pruski, M., Lang, D. P., Hwang, S. J., Jia, H., and Shinar, J., Phys. Rev. B 49, xxxx (1994);Google Scholar
Shinar, J., Pruski, M., Lang, D. P., Hwang, S. J., and Jia, H., this volume.Google Scholar
15. Wild, Ch., Herres, N., and Koidl, P., J. Appl. Phys. 68, 973 (1990).Google Scholar
16. Abragam, A., Principles of Nuclear Magnetism, Oxford University Press, Oxford, 1961, Chap. 9.Google Scholar
17. Goldman, M., Phys. Rev. A138, 1675 (1965).Google Scholar
18. Anthony, T. R., in ref. 1, p. 61.Google Scholar
19. Pederson, M. R., Jackson, K. A., and Pickett, W. E., Phys. Rev., p. 91.Google Scholar
20. Pantelides, S. T., private communication.Google Scholar
21. Trahanovsky, W., private communication.Google Scholar