Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T01:04:38.486Z Has data issue: false hasContentIssue false

On the Origin of the New Electron Traps Induced By Rapid Thermal Annealing in GaAs Using Capping Proximity Technique.

Published online by Cambridge University Press:  26 February 2011

G. Marrakchi
Affiliation:
Laboratoire de Physique de la Matière, INSA, 20 Avenue Albert Einstein, 69621 Villeurbanne Cédex. France.
G. Chaussemy
Affiliation:
Laboratoire de Physique de la Matière, INSA, 20 Avenue Albert Einstein, 69621 Villeurbanne Cédex. France.
A. Laugier
Affiliation:
Laboratoire de Physique de la Matière, INSA, 20 Avenue Albert Einstein, 69621 Villeurbanne Cédex. France.
G. Guillot.
Affiliation:
Laboratoire de Physique de la Matière, INSA, 20 Avenue Albert Einstein, 69621 Villeurbanne Cédex. France.
Get access

Abstract

Rapid Thermal Annealing (RTA) effects on generation or annihilation of deep levels in GaAs have been investigated by Deep Level Transient Spectroscopy (DLTS). Capping proximity technique using three annealing configurations are employed to anneal Liquid Encapsulated Czochralski (LEC) and Bridgman (B) substrates, or Vapor Phase Epitaxy (VPE) and Liquid Phase Epitaxy (LPE) layers. The RTA treatment is performed from 800 to 950°C for two annealing times ( 3 and 10s).

The DLTS data show that the evolution of the native defects depends on the GaAs growth method and also the annealing configuration. We observe the appearance of two new electron traps named RL1 and RL2 induced by the RTA process which depend on the kind of substrate: RL1 and RL2 are created in LEC material while only RL1 is detected in B material. A general comparison of our results with others reported in the literature show that these new electron traps are related to the change of stoichiometry at the GaAs surface and also depend on the existence of specific native defects in the starting GaAs material. It is proposed that the creation of RL1 is related to the EL6 native defect and discuss a possible physical origin for this level. We also propose that RL2 and EL5 originate from the same defect and suggest the divacancy VGaVAs as a possible origin for this trap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Singh, R., J. Appl. Phys. 63, 59,(1988).CrossRefGoogle Scholar
2. Mayer, J.W., Eriksson, L., and Davies, J.A., Ion Implantation in Semiconductors (Academic, Press, New York, 1970).Google Scholar
3. Sadana, D.K., Mat. Res. Soc. Symp. Proc., 92, 319 (1987).Google Scholar
4. Sedgwick, T., J. Electrochem. Soc.: Solid-State Sci. Technol. 130,484 (1983).Google Scholar
5. Reynolds, S., Vook, D.W., Opyd, W.G., and Gibbons, J.F.. Appl.Phys.Lett. 51,916 (1987).Google Scholar
6. Kuzuhara, M., Kohzu, H., and Takayama, Y.. Mat. Res. Soc. Symp. Proc. 23, 651(1984).Google Scholar
7. Kohzu, H., Kuzuhara, M., and Takayama, Y.. J. Appl. Phys, 54, 4998 (1983).Google Scholar
8. Descouts, B., Clei, A. and Duhamel, N., European Mat. Res. Soc. Proc, 16, 235 (1987).Google Scholar
9. Cummings, K.D., Pearton, S.J. and Vella-Coleiro, G.P.. J.Appl.Phys, 60, 163 (1986).Google Scholar
10. Marrakchi, G., Thèse de Doctorat INSA Lyon (FRANCE), Dec 1987.Google Scholar
11. Marrakchi, G., Joly, J.F., Vincent, F., Chaussemy, G., Laugier, A. and Guillot, G.. European Mat. Res. Soc. Proc (strasbourg, 1987).To be published in Appl.Surf.Sci.(1988).Google Scholar
12. Martin, G. M., Mitonneau, A., and Mircea, A.. Electron. Lett, 13, 191 (1977).CrossRefGoogle Scholar
13. von Bardeleben, H.J., Stievenard, D., Deresmes, D., Hubert, A. and Bourgoin, J.C., Phy. Rev. B 34, 7192 (1986).Google Scholar
14. von Bardeleben, H.J. and Bourgoin, J.C., Phy. Rev. B, 36, 7671 (1987).CrossRefGoogle Scholar
15. Gatos, H. C. and Lagowski, J., Phy.Rev. B, 36, 7668 (1987).Google Scholar
16. Guillot, G., Rev. Phys. Appl. 23, 833 (1988).Google Scholar
17. Levinson, M., GaAs and Related Compounds, Inst. Phys. Conf. Ser., 29, 73 (1988).Google Scholar
18. Look, D.C.. To be published in the Proceedings of the semi-insulating III-V material conference, Malmö ( Suède ), 1988.Google Scholar
19. Zhao, J.H., Lee, J.C., Fang, Z.Q., Schlesinger, T.E., and Milnes, A.G.. J.Appl.Phys. 61, 5303 (1987).CrossRefGoogle Scholar
20. Kuzuhara, M. and Nozaki, T., J.Appl.Phys. 59, 3131 (1986).Google Scholar
21. Katayama, M., Usami, A., and Wada, T.. J.Appl.Phys. 62, 528 (1987).Google Scholar
22. Min, S.K., Kim, E. K., and Cho, H.Y., J.Appl.Phys. 63, 4422 (1988).Google Scholar
23. Marrakchi, G., Guillot, G., and Nouailhat, A.. Mat. Res. Soc. Symp. Proc. 104.509 (1988).Google Scholar
24. Baraff, G.A. and Schluter, M.. Phys. Rev. Lett. 33,7346 (1986).Google Scholar