Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T06:59:10.279Z Has data issue: false hasContentIssue false

On the Physical Nature of Uranyl Charge Transfer Vibronic Interactions

Published online by Cambridge University Press:  01 February 2011

X. Y. Chen
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, IL 60439
L. F. Rao
Affiliation:
Glenn T. Seaborg Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
G. K. Liu*
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, IL 60439
*
* Corresponding author, Email: gkliu@anl.gov
Get access

Abstract

We address the electronic properties of uranyl ions in solids and solutions with an emphasis in theoretical understanding of charge transfer vibronic transitions and luminescence dynamics the O-U-O species. A general theory of ion-phonon interaction has been modified for modeling and simulating multi-phonon vibronic spectra. Spectroscopic data for uranyl ions in crystals and solutions have been analyzed to achieve a predictive understanding of the uranyl-ligand vibronic interactions. By adjusting the Huang-Rhys ion-phonon interaction parameters, an excellent agreement between theory and experiment has been accomplished for uranyl ions in the ligand environments we studied. Our modeling and simulation provide insights into the physical nature of uranyl vibronic interaction and its influence on spectroscopic properties, which are commonly utilized in characterizing photochemical properties of uranyl in complexes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Metcalf, D.H., Dai, S., Del Cul, G.D., and Toth, L.M., Inorg. Chem. 34, 5573 (1995).Google Scholar
2. Wagner, M. J. Chem. Phys. 41, 3939(1964).Google Scholar
3. Wagner, M. and Bron, W. E., Phys. Rev. 139, A223 (1965).Google Scholar
4. Bron, W.E. and Wagner, M., Phys. Rev. 139, A 233 (1965).Google Scholar
5. Liu, G.K., Chen, X.Y., and Huang, J., Mol. Phys. 101, 1029 (2003).Google Scholar
6. Liu, G.K., Chen, X.Y., Edelstein, N.M., Reid, M.F., and Huang, J., J. Alloy Compd. (in press).Google Scholar
7. Huang, K. and Rhys, A., Proc. Roy. Soc. A 204, 406 (1950).Google Scholar
8. Miyakawa, and Dexter, D. L., Phys. Rev. B 1, 2961(1970).Google Scholar
9. Yersin, H., Otto, H., Zink, J.I., and Gliemann, G., J. Am. Chem. Soc. 102, 951 (1980).Google Scholar
10. Denning, R.G., in Vibronic processes in inorganic chemistry, edited by Flint, C.D. (Kluwer Academic Publisher, Dordrecht/Boston/London, 1989), p. 111.Google Scholar
11. Tanner, P. A., Mak, C. S. K., Edelstein, N. M., Murdoch, K., Liu, G. K., Huang, J., Seijo, L., and Barandiarán, Z., J. Am. Chem. Soc. 125, 13225 (2003).Google Scholar
12. Barandiarán, Z. and Seijo, L., J. Chem. Phys. 119, 3785 (2003).Google Scholar
13. Eliet, V., Bidoglio, G., Omenetto, N., Parma, L., and Grenthe, I., J. Chem. Soc. Faraday Trans. 91, 2275 (1995).Google Scholar
14. Baird, C.P. and Kemp, T.J., Prog. Reaction Kinetics 22, 87 (1997).Google Scholar
15. Nguyen-Trung, C., Palmer, D.A., Begun, G.M., Peiffert, C., and Mesmer, R.E., J. Solution Chem. 29, 101 (2000)Google Scholar
16. Eliet, V., Grenthe, I., Bidoglio, G., Applied Spectroscopy 54, 99 (2000).Google Scholar
17. Meinrath, G., Lis, S., Stryla, Z., and Noubactep, C., J. Alloy Compd. 300–301, 107 (2000).Google Scholar
18. Kimura, T., Nagaishi, R., Ozaki, T., Arisaka, M., Yoshida, Z., J. Nucl. Sci. Technology, Supplement 3, 233 (2002).Google Scholar
19. Zanonato, P., Bernardo, P.D., Bismondo, A., Liu, G.K., Chen, X.Y. and Rao, L.F., to be submitted.Google Scholar
20. Bartlett, J. R. and Cooney, R., J. Molecular Structure 193, 295 (1989).Google Scholar