Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T07:13:52.218Z Has data issue: false hasContentIssue false

On the scaling of exciton and impurity binding energies and the virial theorem in semiconductor quantum wells and quantum-well wires

Published online by Cambridge University Press:  21 March 2011

M. de Leyva-Dios
Affiliation:
Dept. of Theoretical Physics, Univ. of Havana, San Lazaro y L, Vedado, 10400, Havana, Cuba
L. E. Oliveira
Affiliation:
Instituto de Física, Unicamp, CP 6165, Campinas, São Paulo, 13083-970, Brazil
Get access

Abstract

We have used the variational and fractional-dimensional space approaches in a study of the virial theorem value and scaling of the shallow-donor binding energies versus donor Bohr radiusin GaAs-(Ga,Al)As semiconductor quantum wells and quantum-well wires. A comparison is made with previous results with respect to exciton states. In the case the donor ground-state wave function may be approximated by a D-dimensional hydrogenic wave function, the virial theorem value equals 2 and the scaling rule for the donor binding energy versus quantum-sized Bohr radius is hyperbolic, both for quantum wells and wires. In contrast, calculations within the variational scheme show that the scaling of the donor binding energies with quantum-sized Bohr radius is in general nonhyperbolic and that the virial theorem value is nonconstant.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rossi, F., Goldoni, G., and Molinari, E., Phys. Rev. Lett. 78, 3527 (1997).Google Scholar
2. Zhang, Y. and Mascarenhas, A., Phys. Rev. B 59, 2040 (1999).Google Scholar
3. Oliveira, L. E., Phys. Rev. B 38, 10641 (1988); N. Porras-Montenegro and S. T. Pérez-Merchancano, Phys. Rev. B 46, 9780 (1992).Google Scholar
4. Stillinger, F. H., J. Math. Phys. 18 1224 (1977); X-F. He, Phys. Rev. B 43, 2063 (1991); P. Christol, P. Lefebvre and H. Mathieu, J. Appl. Phys. 74, 5626 (1993).Google Scholar
5. Matos-Abiague, A., Oliveira, L. E., and Dios-Leyva, M. de, Phys. Rev. B 58, 4072 (1998); E. Reyes-Gómez, L. E. Oliveira, and M. de Dios-Leyva, J. Appl. Phys. 85, 4045 (1999); E. Reyes-Gómez, A. Matos-Abiague, C. A. Perdomo-Leiva, M. de Dios-Leyva, and L. E. Oliveira, Phys. Rev. B 61, 13104 (2000); M. de Dios-Leyva and L. E. Oliveira, J. Phys.: Cond. Matter 13, 9471 (2001).Google Scholar