Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T10:12:25.756Z Has data issue: false hasContentIssue false

Optical And Structural properties of Vertical Aligned Self-Assembled InAs Quantum Dots Multilayers

Published online by Cambridge University Press:  21 March 2011

J. C. González
Affiliation:
North Carolina State University, Analytical Instrumentation Facility, Raleigh-NC, 27695-7531, U.S.A.
M. I. N. da Silva
Affiliation:
North Carolina State University, Analytical Instrumentation Facility, Raleigh-NC, 27695-7531, U.S.A.
W. N. Rodrigues
Affiliation:
Universidade Federal de Minas Gerais, Depto. de Física, Belo Horizonte-MG, Brazil
F. M. Matinaga
Affiliation:
Universidade Federal de Minas Gerais, Depto. de Física, Belo Horizonte-MG, Brazil
R. Magalhaes-Paniago
Affiliation:
Universidade Federal de Minas Gerais, Depto. de Física, Belo Horizonte-MG, Brazil
M. V. Moreira
Affiliation:
Universidade Federal de Minas Gerais, Depto. de Física, Belo Horizonte-MG, Brazil
A. G. de Oliveira
Affiliation:
Universidade Federal de Minas Gerais, Depto. de Física, Belo Horizonte-MG, Brazil
D. Ugarte
Affiliation:
Laboratório Nacional de Luz Síncrotron, Campinas-SP, Brazil
Get access

Abstract

In this work, we report optical and structural properties of vertical aligned self-assembled InAs quantum dots multilayers. The InAs quantum dots samples were grown by Molecular Beam Epitaxy. Employing Atomic Force Microscopy, Transmission Electron Microscopy, and Gracing Incident X-ray Diffraction we have studied the structural properties of samples with different number of periods of the multiplayer structure, as well as different InAs coverage. The optical properties were studied using Photoluminescence spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ramachandran, T. R., Madhukar, A., Mukhametzhanov, I., Heitz, R., Kalburge, A., Xie, Q., and Chen, P., J. Vac. Sci. Technol. B 16, 1330 (1998).Google Scholar
2. Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N. P., Phys. Rev. Lett. 75, 2542 (1995).Google Scholar
3. Tersoff, J., Phys. Rev. Lett. 76, 1675 (1996).Google Scholar
4. González, J. C., Matinaga, F. M., Rodrigues, W. N., Moreira, M. V. B., de Oliveira, A. G. da Silva, M. I. N., Vilela, J. M. C., Andrade, M. S., Ugarte, D., and Silva, P. C., Appl. Phys. Lett. 76, 3400 (2000).Google Scholar
5. González, J. C., Magalhaes-Paniago, R., Rodrigues, W. N., Malachias, A., Moreira, M. V. B., de Oliveira, A. G., Mazzaro, I., Cusatis, C., Metzger, T. H., and Peisl, J., Appl. Phys. Lett. 78, 1056 (2001)Google Scholar
6. Lian, G. D., Yuan, J., Brown, L. M., Kim, G. H., and Ritchie, D. A., Appl. Phys. Lett. 73, 49 (1998).Google Scholar
7. Grundmann, M., Siter, O., and Bimberg, D., Phys. Rev. B 52, 11969 (1995).Google Scholar