Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T10:17:04.131Z Has data issue: false hasContentIssue false

Optical Characterization of Mg- and Si-Implanted GaN

Published online by Cambridge University Press:  21 March 2011

James A. Fellows
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, U.S.A
Yung Kee Yeo
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, U.S.A
Robert L. Hengehold
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, U.S.A
Leonid Krasnobaev
Affiliation:
Implant Sciences Corp, Wakefield, MA 01880-1246, U.S.A
Get access

Abstract

The optical and electrical properties of Mg- and Si-implanted GaN were investigated using photoluminescence, cathodoluminescence, and Hall-effect measurements. Implantation of Mg, Si, Mg+Si, Mg+O, Mg+C, and Mg+P was made into undoped semi-insulating MBE-grown GaN at energies from 125 to 260 keV at room temperature and 800 oC with doses of 1x1014 to 5x1015 cm−2. The samples were capped with AlN and annealed at temperatures ranging from 1100 to 1300 oC for 9 s to 20 min. The dominant luminescence peak in all Mg-implanted and annealed GaN is a broad green luminescence (GL) band at 2.36 eV, which may be related to a deep donor-deep acceptor complex transition resulting from the Mg implant, residual implant damage, and/or native defects. The relative intensities of this GL band and secondary peaks from 2.75-3.28 eV vary as a function of implantation temperature, ion dose, species, and anneal temperature. All Mg single and dual implantation resulted in extremely resistive GaN layers, except Mg+Si, which resulted in weakly n-type GaN. However, the Si-implanted GaN produced an electrical activation efficiency as high as 73% after annealing at 1200 oC for 5 min.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rubin, M., Newman, N., Chan, J. S., Fu, T. C., Ross, J. T., Appl. Phys. Lett. 64, 64 (1994).Google Scholar
2. Pearton, S. J., Vartuli, C. B., Zolper, J. C., Yuan, C., Stall, R. A., Appl. Phys. Lett. 67, 1435 (1995).Google Scholar
3. Zolper, J. C., Wilson, R. G., Pearton, S. J., Stall, R. A., Appl. Phys. Lett. 68, 1945 (1996).Google Scholar
4. Sun, Y., Tan, L. S., Chua, S. J., Prakash, S., MRS Internet J. Nitride Semicond. Res. 5S1, W3.82 (2000).Google Scholar
5. Chi, G-C., Pong, B. J., Pan, C. J., Teng, Y. C., Mat. Res. Soc. Symp. Proc. 482, 1027 (1998).Google Scholar
6. Skromme, B. J. and Martinez, G. L., MRS Internet J. Nitride Semicond. Res. 5S1, W9.8 (2000).Google Scholar
7. Ronning, C., Hofsäss, H, Stötzler, A., Deicher, M., Carlson, E. P., Hartlieb, P. J., Gehrke, T., Rajagopal, P., Davis, R. F., MRS Internet J. Nitride Semicond. Res. 5S1, W11.44 (2000).Google Scholar
8. Hess, S., Taylor, R. A., Ryan, J. F., Cain, N. J., Roberts, V., and Roberts, J., Phys. Stat. Sol. (b) 210, 465 (1998).Google Scholar
9. Kaufmann, U., Kunzer, M., Obloh, H., Maier, M., Manz, C., Ramakrishnan, A., Santic, B., Phys. Rev. B 59, 5561 (1999).Google Scholar
10. Sheu, J. K., Su, Y. K., Chi, G. C., Pong, B. J., Chen, C. Y., Huang, C. N., and Chen, W. C., J. Appl. Phys. 84, 4590 (1998).Google Scholar