Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T03:04:05.819Z Has data issue: false hasContentIssue false

Optical Detection of the Charging of InAs Quantum Dots with Different Backgate Configurations

Published online by Cambridge University Press:  11 February 2011

B. Su
Affiliation:
Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstraβe 11, 20355 Hamburg, Germany
L. Karsten
Affiliation:
Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstraβe 11, 20355 Hamburg, Germany
C. Schüller
Affiliation:
Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstraβe 11, 20355 Hamburg, Germany
D. Heitmann
Affiliation:
Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstraβe 11, 20355 Hamburg, Germany
A. A. Zhukov
Affiliation:
Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstraβe 11, 20355 Hamburg, Germany
Ch. Heyn
Affiliation:
Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstraβe 11, 20355 Hamburg, Germany
W. Hansen
Affiliation:
Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstraβe 11, 20355 Hamburg, Germany
Get access

Abstract

We investigate self-assembled InAs quantum dots by photoluminescence (PL) and capacitance spectroscopies. By employing specially designed backelectrode configurations, we can control the number of electrons, which are confined in the quantum dots. With PL experiments we study the dependence of the s-s transition on the electron occupation of the quantum dots. We observe a characteristic redshift of the s-s transition when the s-shell is filled with electrons. However, if the p-shell of the quantum dots starts to fill, the samples with different backelectrode configurations show a different behavior. In one type of samples, the signal stays redshifted, while in the other it blueshifts again. The effect can be explained by different hole capture processes in both types of samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

for a recent review see: Gammon, Daniel and Steel, Duncan G. in Physics Today, October 2002, page 36.Google Scholar
2. Meurer, B., Heitmann, D., and Ploog, K., Phys. Rev. Lett. 68, 1371 (1992).Google Scholar
3. Drexler, H., Leonard, D., Hansen, W., Kotthaus, J. P., and Petroff, P. M., Phys. Rev. Lett. 73, 2252 (1994);Google Scholar
Miller, B. T., Hansen, W., Manus, S., Luyken, R. J., Lorke, A., Kotthaus, J. P., Huant, S., Medeiros-Ribeiro, G., and Petroff, P. M., Phys. Rev. B 56, 6764 (1997).Google Scholar
4. Warburton, R. J., Dürr, C. S., Karrai, K., Kotthaus, J. P., Medeiros-Ribeiro, G., and Petroff, P. M., Phys. Rev. Lett. 79, 5282 (1997).Google Scholar
5. Fricke, M., Lorke, A., Kotthaus, J. P., Medeiros-Ribeiro, G., and Petroff, P. M., Europhys. Lett. 36, 197 (1996).Google Scholar
6. Warburton, R. J., Miller, B. T., Dürr, C. S., Bödefeld, C., Karrai, K., Kotthaus, J. P., Medeiros-Ribeiro, G., Petroff, P.M., and Huant, S., Phys. Rev. B 58, 16221 (1998).Google Scholar
7. Schmidt, K. H., Medeiros-Ribeiro, G., and Petroff, P. M., Phys. Rev. B 58, 3597 (1998).Google Scholar
8. Findeis, F., Baier, M., Zrenner, A., Bichler, M., Abstreiter, G., Hohenester, U., and Molinari, E., Phys. Rev. B 63, 121309(R) (2001).Google Scholar
9. Hartmann, A., Ducommun, Y., Kapon, E., Hohenester, U., and Molinari, E., Phys. Rev. Lett. 84, 5648 (2000).Google Scholar
10. Warburton, R. J., Schäflein, C., Haft, D., Bickel, F., Lorke, A., Karrai, K., Garcia, J. M., Schoenfeld, W., and Petroff, P. M., Nature 405, 926 (2000).Google Scholar
11. Bayer, M., Stern, O., Hawrylak, P., Farfard, S., and Forchel, A., Nature 405, 923 (2000).Google Scholar
12. Bayer, M., Hawrylak, P., Hinzer, K., Fafard, S., Korkusinski, M., Wasilewski, Z. R., Stern, O., and Forchel, A., Science 291, 451 (2001).Google Scholar
13. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S., and Park, D., Science 273, 87 (1996).Google Scholar
14. Chen, G., Bonadeo, N. H., Steel, D. G., Gammon, D., Katzer, D. S., Park, D., and Sham, L. J., Science 289, 1906 (2000).Google Scholar
15. Stievater, T. H., Li, X., Steel, D. G., Gammon, D., Katzer, D. S., Park, D., Piermarocchi, C., and Sham, L. J., Phys. Rev. Lett. 87, 133603 (2001);Google Scholar
Zrenner, A., Beham, E., Stufler, S., Findeis, F., Bichler, M., and Abstreiter, G., Nature 418, 612 (2002).Google Scholar
16. Wojs, A. and Hawrylak, P., Phys. Rev. B 55, 13066 (1997).Google Scholar