Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T10:03:14.634Z Has data issue: false hasContentIssue false

Optical Near-Field Properties of Lithographically Designed Metallic Nanoparticles

Published online by Cambridge University Press:  10 February 2011

J.C. Weeber
Affiliation:
Laboratoire de physique, Optique submicronique, Université de Bourgogne, F-21000, Dijon Cedex, France
J.R. Krenn
Affiliation:
Laboratoire de physique, Optique submicronique, Université de Bourgogne, F-21000, Dijon Cedex, France
A. Dereux
Affiliation:
Laboratoire de physique, Optique submicronique, Université de Bourgogne, F-21000, Dijon Cedex, France
E. Bourillot
Affiliation:
Laboratoire de physique, Optique submicronique, Université de Bourgogne, F-21000, Dijon Cedex, France
J.P. Goudonnet
Affiliation:
Laboratoire de physique, Optique submicronique, Université de Bourgogne, F-21000, Dijon Cedex, France
B. Schider
Affiliation:
Institut für Experimentalphysik, Universität Graz, Universitätsplatz 5, A-8010 Graz, Austria
F.R. Aussenegg
Affiliation:
Institut für Experimentalphysik, Universität Graz, Universitätsplatz 5, A-8010 Graz, Austria
Ch. Girard
Affiliation:
CEMES, 29 rue Jeanne Marvig, BP 4347, F-31055, Toulouse Cedex 4, France
Get access

Abstract

We report on the experimental observation of localized surface plasmons sustained by small metallic particles using a photon scanning tunneling microscope (PSTM). The surface plasmons are excited in gold nanostructures tailored by electron beam lithography. The constant height operation of the PSTM allowed a direct comparison with theoretical computations of the distribution of the optical near-field intensity. Plasmon coupling above a chain of Au particles and electromagnetic energy transfer from a resonantly excited nanoparticle to a nanowire are demonstrated. Our experimental results appear to be in good agreement with theoretical computations based on the Green's Dyadic Technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bohren, C. and Huffman, D., Absorption and scattering of light by small particles (John Wiley, New-York, 1983).Google Scholar
2. Kreibig, U. and Vollmer, M., Optical properties of metal clusters, Vol. 25 of Springer series in material science (Springer, Berlin, 1995).10.1007/978-3-662-09109-8Google Scholar
3. Krenn, J. R. et al. , Appl. Phys. A 61, 541 (1995).10.1007/BF01540256Google Scholar
4. Reddick, R. C., Warmack, R. J., and Ferrell, T. L., Phys. Rev. B 39, 767 (1989).10.1103/PhysRevB.39.767Google Scholar
5. Girard, C., Dereux, A., Martin, O. J. F., and Devel, M., Phys. Rev. B 52, 2889 (1995).10.1103/PhysRevB.52.2889Google Scholar
6. Girard, C. and Dereux, A., Rep. Prog. Phys. 59, 657 (1996).10.1088/0034-4885/59/5/002Google Scholar
7. Greffet, J. J. and Carminati, R., Prog. Surf. Sci. 56, 133 (1997).10.1016/S0079-6816(98)00004-5Google Scholar
8. Weeber, J. C. et al. , Phys. Rev. Lett. 77, 5332 (1996).10.1103/PhysRevLett.77.5332Google Scholar
9. Dereux, A. et al. , Ann. Phys. Fr. 23, 27 (1998).Google Scholar
10. Gotschy, W., Vonmetz, K., Leitner, A., and Aussenegg, F. R., Appl. Phys. B 63, 381 (1996).10.1007/BF01828742Google Scholar