Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T14:05:01.513Z Has data issue: false hasContentIssue false

Optical Properties of Free-Standing Porous Si Films

Published online by Cambridge University Press:  25 February 2011

Y. Kanemitsu
Affiliation:
Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
H. Uto
Affiliation:
Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Y. Masumoto
Affiliation:
Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
T. Matsumoto
Affiliation:
Electronics Research Laboratories, Nippon Steel Corporation, Sagamihara 229, Japan
T. Futagi
Affiliation:
Electronics Research Laboratories, Nippon Steel Corporation, Sagamihara 229, Japan
H. Mimura
Affiliation:
Electronics Research Laboratories, Nippon Steel Corporation, Sagamihara 229, Japan
Get access

Abstract

We have studied optical properties of free-standing porous Si thin films fabricated by electrochemical anodization. The average diameter of Si crystallite spheres is evaluated by Raman spectroscopy and transmission electron microscopy. The blueshift of optical absorption spectrum is observed with a decrease in the average diameter of Si crystallites. However, there is no clear size dependence of the peak energy of broad photoluminescence spectrum. Spectroscopic analysis strongly suggests that the photogeneration of carriers occurs in the c-Si core whose band gap is modified by the quantum confinement effect, whereas the radiative recombination of carriers occurs in the near-surface region of small crystallites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

[1] Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[2] Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
[3] Kanemitsu, Y., Uto, H., Masumoto, Y., and Maeda, Y., Appl. Phys. Lctt. 61, 2178 (1992).Google Scholar
[4] Gardelis, S., Rimmer, J. S., Dawson, P., Hamilton, B., Kubinak, R. A., Whall, T. E., and Parker, E. H. C., Appl. Phys. Lett. 59, 2118 (1991).CrossRefGoogle Scholar
[5] Tsu, R., Shen, H., and Dutta, M., Appl. Phys. Lett. 60, 112 (1992).Google Scholar
[6] Ohno, T., Shiraishi, K., and Ogawa, T., Phys. Rev. Lett. 69, 2400 (1992).CrossRefGoogle Scholar
[7] Takagahara, T. and Takeda, K., Phys. Rev. B 46, 15578 (1992).Google Scholar
[8] Tischler, M. A., Collins, R. T., Stathis, J. H., and Tsang, J. C., Appl. Phys. Lett. 60, 639 (1992).; J. C. Tsang, M. A. Tischler, and R. T. Collins, Appl. Phys. Lett. 60, 2279 (1992).Google Scholar
[9] Tai, C., Li, K. H., Kinosky, D. S., Oian, R. Z., Hsu, T. C., Irby, J. T., Banerjee, S. K., Tasch, A. F., Campbell, J. C., Hance, B. K., and White, J. M., Appl. Phys. Lett. 60, 1700 (1992).Google Scholar
[10] George, T., Anderson, M. S., Pike, W. T., Lin, T. L. Fathauer, R. W., Jung, K. H., and Kwong, D. L., Appl. Phys. Lett. 60, 2359 (1992).Google Scholar
[11] Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Commun. 81, 307 (1992).Google Scholar
[12] Kanemitsu, Y., Suzuki, K., Uto, H., Masumoto, Y., Matsumoto, T., Kyushin, S., Higuchi, K., and Matsumoto, H., Appl. Phys. Lett. 61, 2446 (1992).CrossRefGoogle Scholar
[13] See, for example, Brus, L., Appl. Phys. A 53, 465 (1991).Google Scholar
[14] Richter, H., Wang, Z. P., and Ley, L., Solid State Commun., 39, 625 (1981).Google Scholar
[15] Campbell, I. H. and Fauchet, P. M., Solid State Commun., 58, 739 (1984).Google Scholar
[16] See, for example, Tanaka, A., Onari, S., and Arai, T., Phys. Rev. B 45, 6587 (1992).Google Scholar
[17] Tubino, R., Piseri, L., and Zerbi, G., J. Chem. Phys. 56, 1022 (1972).Google Scholar
[18] If we assume that the number of photons absorbed in the sample film depends on the porosity p and is proportional to (1-p), the corrected optical absorption coefficient β is approximately given by β = α - [In(1-p)]/d, where a is the absorption coefficient of the sample film determined from the transmission spectrum without the correction of porosity and d is the sample thickness. Using values of p-0.6-0.8 and d-40 ptm, the correction term of -[In(1-p)/d] estimated to be -2-4x102 cm−1.Google Scholar
[19] Ren, S. Y. and Dow, J. D., Phys. Rev. B 45, 6492 (1992).Google Scholar
[20] Masumoto, T., Futagi, T., Mimura, H., and Kanemitsu, Y., Phys. Rev. B 47 (1993) in press.Google Scholar