Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T07:14:30.970Z Has data issue: false hasContentIssue false

Optical Properties of One-Dimensional Metal Nanostructures

Published online by Cambridge University Press:  21 March 2011

Encai Hao
Affiliation:
Department of Chemistry and Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston, Illinois 60208, U.S.A.
Shengli Zou
Affiliation:
Department of Chemistry and Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston, Illinois 60208, U.S.A.
George C. Schatz
Affiliation:
Department of Chemistry and Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston, Illinois 60208, U.S.A.
Get access

Abstract

We present a theoretical study of the optical properties of one-dimensional (1-D) metal nanostructures including nanorods and nanotubes. Although the optical properties of gold nanotubes are similar to that of gold nanorods, both the longitudinal and transverse plasmon resonances of gold nanotubes show much larger red-shifting and narrower. The E-field calculations indicate that the 1-D gold nanostructures, particularly gold nanotubes have great potential for applications to SERS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jana, N. R., Gearheart, L., Murphy, C. J., Chem. Commun. 617 (2001).Google Scholar
2. Yu, Y.-Y., Chang, S.-S., Lee, C.-L., Wang, C. R. C., J. Phys. Chem. B 101, 6661 (1997).Google Scholar
3. Link, S., El-Sayed, M. A., J. Phys. Chem. B 103, 8410 (1999).Google Scholar
4. Jin, R., Cao, Y., Mirkin, C., Kelly, K. L., Schatz, G. C., Zhang, J. G., Science 294, 1901 (2001).Google Scholar
5. Sun, Y. G., Mayers, B., Xia, Y. N., Nano Lett. 3, 765, (2003).Google Scholar
6. Hao, E., Kelly, K. L., Hupp, J. T., Schatz, G. C., J. Am. Chem. Soc. 124, 15182 (2002).Google Scholar
7. Hao, E., Bailey, R. C., Schatz, G. C., Hupp, J. T., Li, S., Nano Lett. 4, 327 (2004).Google Scholar
8. Kelly, K. L., Coronado, E., Zhao, L. L., Schatz, G. C., J. Phys. Chem. B 107, 668 (2003).Google Scholar
9. Jensen, T., Kelly, K. L., Lazarides, A., Schatz, G. C., J. Cluster Sci. 10, 295 (1999).Google Scholar
10. Yang, W. H., Schatz, G. C., Duyne, R.P.Van, J. Phys. Chem. 103, 869 (1995).Google Scholar
11. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H., Adv. Mater. 15, 353 (2003).Google Scholar
12. Sun, Y., Mayers, B., Xia, Y., Adv. Mater. 15, 641 (2003).Google Scholar
13. Sun, Y., Xia, Y., Adv. Mater. 16, 264 (2004).Google Scholar
14. Nikoobakht, B., Wang, J., El-Sayed, M.A., Chem. Phys. Lett. 366, 17 (2002).Google Scholar
15. Hao, E., Schatz, G. C., J. Chem. Phys. 120, 357 (2004).Google Scholar