Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T10:10:37.730Z Has data issue: false hasContentIssue false

Optical Spectroscopy of Single Self Assembled Quantum Dots

Published online by Cambridge University Press:  10 February 2011

E. Dekel
Affiliation:
Physics Department and Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
D. Gershoni
Affiliation:
Physics Department and Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel, dg@phvsics.technion.ac.il
E. Ehrenfreund
Affiliation:
Physics Department and Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
J.M. Garcia
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106, USA
P.M. Petroff
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106, USA
Get access

Abstract

We applied low temperature diffraction limited confocal optical microscopy to spatially resolve, and spectroscopically study photoluminescence from single self-assembled semiconductor quantum dots. Using selective wavelength imaging we unambiguously demonstrated that a single photoexcited quantum dot emits light in a few very narrow spectral lines. By solving numerically a many body Hamiltonian for a model quantum dot, we show that the multi-line emission spectrum is due to optical transitions between confined exciton multiplexes. We explain the measured spectrum and its dependence on the power of either cw or pulsed excitation by analytically solving the coupled rate equations for the excitation relaxation between these exciton multiplexes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bimberg, D., Grundmann, M. and Ledentsov, N.N., Ouantum Dot Heterostructures, (John Wiley & Sons, UK, 1998).Google Scholar
2. Stranski, I. N. and Krastanow, L., Akad. Wiss. Lit. Math.-Natur K1. lb 146, 767 (1939).Google Scholar
3. Marzin, J. Y., Gerard, J. M., Israel, A. et al. , Phys. Rev. Lett. 73, 716 (1994).10.1103/PhysRevLett.73.716Google Scholar
4. Drexler, H., Leonard, D., Hansen, W., Phys. Rev. Lett. 73, 2252 (1994).10.1103/PhysRevLett.73.2252Google Scholar
5. Leonard, D., Petroff, P. M. et al. , Phys. Rev. B 50, 8086 (1994).10.1103/PhysRevB.50.11687Google Scholar
6. Leonard, D., Pond, K., Petroff, P. M., Phys. Rev. B 50, 11687 (1994).10.1103/PhysRevB.50.11687Google Scholar
7. Bayer, M., Gutbrod, T., Forchel, A. et al. , Phys. Rev. B 58, 4740 (1998).10.1103/PhysRevB.58.4740Google Scholar
8. lkezawa, M., Masumoto, Y., Takagahara, T. and Nair, S.V., Phys. Rev. Lett 79, 3522 (1997).Google Scholar
9. Landin, L., Miller, M. S., Pistol, M. E., Pryor, C. E., Samuelson, L., Science 280, 262 (1998).10.1126/science.280.5361.262Google Scholar
10. Heitz, R., Kalburge, A., Xie, Q., Grundmann, M. et al. , Phys. Rev. B 57, 9050 (1998).10.1103/PhysRevB.57.9050Google Scholar
11. Brunner, K., Abstreiter, G., Bohm, G. et al. , Phys. Rev. Lett. 73, 1138 (1994).10.1103/PhysRevLett.73.1138Google Scholar
12. Kamada, H., Ando, H., Temmyo, J., and Tamamura, T., Phys. Rev. B 58, 16243 (1998).10.1103/PhysRevB.58.16243Google Scholar
13. Toda, Y., Shinomori, S., Suzuki, K. and Arakawa, Y., Phys. Rev. B 58, 10147 (1998).10.1103/PhysRevB.58.R10147Google Scholar
14. Gammon, D., Snow, E. S., Shanabrook, B. V. et al. , Phys. Rev. Lett. 76, 3005 (1996).10.1103/PhysRevLett.76.3005Google Scholar
15. Franceschetti, A., Wang, L. W., Fu, H. and Zunger, A., Phys. Rev. B 58, R13367 (1998).10.1103/PhysRevB.58.R13367Google Scholar
16. Barenco, A. and Dupertuis, M. A., Phys. Rev. B 52, 2766 (1995).10.1103/PhysRevB.52.2766Google Scholar
17. Dekel, E., Gershoni, D., Ehrenfreund, E. et al. , Phys. Rev. Lett. 80, 4991 (1998).10.1103/PhysRevLett.80.4991Google Scholar
18. Adachi, S., J. Appl. Phys. 58, R1 (1985).10.1063/1.336070Google Scholar
19. Harris, T. D., Gershoni, D., Grober, R. D. et al. , Appl. Phys. Lett. 68, 988 (1996).10.1063/1.116121Google Scholar
20. Hess, H.F., Betzig, E., Harris, T. D., Pfeiffer, L. N. and West, K. W., Science 264, 1740 (1994).10.1126/science.264.5166.1740Google Scholar
21. Kim, J., Wang, L. W. and Zunger, A., Phys. Rev. B 57, R9408 (1998).10.1103/PhysRevB.57.R9408Google Scholar
22. Grosse, S., Sandmann, J. H. H., Plessen, G. von et al. , Phys. Rev. B 55, 4477 (1997).Google Scholar
23. Bresken, M., Lindberg, M., Sopanen, M. et al. , Phys. Rev. B 58, 15993 (1998).10.1103/PhysRevB.58.R15993Google Scholar