Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-21T12:58:59.916Z Has data issue: false hasContentIssue false

Optical Studies of porous Silicon

Published online by Cambridge University Press:  25 February 2011

T. Lin
Affiliation:
Intel Corporation, Components Research, Santa Clara, CA
M. E. Sixta
Affiliation:
Intel Corporation, Components Research, Santa Clara, CA
J. N. Cox
Affiliation:
Intel Corporation, Components Research, Santa Clara, CA
M. E. Delaney
Affiliation:
Intel Corporation, Components Research, Santa Clara, CA
Get access

Abstract

The optical properties of both electrochemically anodized and chemically stain-etched porous silicon are presented. Fourier transform infrared (FTIR) spectroscopy showed that absorbance in stain-etched samples was 3x and 1.7x greater than in anodized samples for the SiH/SiH2 stretch and scissors-bending modes, respectively. Also, oxygen is detected in stain-etched samples immediately after formation, unlike anodized samples. Photoluminescence measurements showed different steady state characteristics. Electrochemical-etched silicon samples stored in air increased in photoluminescent intensity over time, unlike the stain-etched samples. A photoluminescent device made by anodization on epitaxial p-type material (0.4 Ωm) on n-type substrate (0.1 Ω-cm) did not exhibit electroluminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L.T., Appl. Phys. Lett., 57, 1046 (1990).Google Scholar
2. George, T., Anderson, M.S., Pike, W. T., Lin, T. L., Fathauer, R. W., Jung, K.H., and Kwong, D.L., Appl. Phys. Lett. 60, 2359 (1992).CrossRefGoogle Scholar
3. Wolford, D.J., Scott, B.A., Reimer, J.A., and Bradley, J.A., Physica B 117/118, 920 (1983).CrossRefGoogle Scholar
4. Street, R.A. in Semiconductors and Semimetals, edited by Pankove, J.I. (Academic, Orlando, FL, 1984), Vol. 21, Part B, P. 197.Google Scholar
5. Tsai, C., Li, K.-H., Kinosky, D.S., Qian, R.-Z., Hsu, T.-C., Irby, J.T., Banerjee, S.K., Tasch, A.F., Campbell, Joe C., Hance, B.K., and White, J.M., Appl. Phys. Lett. 60, 1700 (1992).CrossRefGoogle Scholar
6. Fuchs, H.D., Brandt, M.S., Stutzmann, M., and Weber, J., Mat. Res Soc. Symp. Proc., Vol. 256, (1992).Google Scholar
7. Hummel, R.E. and Chang, Sung-Sik, Appl. Phys. Lett. 61, 1965 (1992).Google Scholar
8. Hoofk, G.W.'t, Kessener, Y.A.R.R., Rikken, G.L.J.A., and Venhuizen, A.H.I.J., Appl. Phys.Lett. 61, 2344 (1992).Google Scholar
9. Robinson, M.B., Dillon, A.C., Haynes, D.R., and George, S.M., Mat. Res Soc. Symp. Proc., Vol 256, (1992).Google Scholar
10. Chabal, Y.J., Higashi, G.S., Raghavachari, K., and Burrows, V.A., J. Vac. Sci. Technol. A, 7, 2104 (1989)Google Scholar
11. Wagner, H., Butz, R., Backes, U., and Bruchmann, D., Solid State Commun. 38, 1155 (1981).Google Scholar
12. Stucki, F., Schaefer, J. A., Anderson, J. R., Lapeyre, G.J., Gopel, W., Solid State Commun. 47, 795 (1983).CrossRefGoogle Scholar
13. Kaiser, W., Keck, P.H., and Lange, C.F., Phys. Rev. 101, 1264 (1956).Google Scholar
14. Hrotowski, H.J and Kaiser, R.H., Phys. Rev. 107, 966 (1957).CrossRefGoogle Scholar
15. Gupta, P., Colvin, V.L., and George, S.M., Phys. Rev. B. 37, 8234 (1988).Google Scholar
16. Chabal, Y.J., Raghavachari, K., Phys. Rev. Lett. 53, 282 (1984).Google Scholar
17. Chabal, Y.J., Raghavachari, K., Phys. Rev. Lett. 54, 1055 (1985).Google Scholar
18. Tsai, C., LI, K.-H., ICampbell, C., Hance, B.K., and White, J.M., J. Electronic Mat., 21, No. 6, 589 (1992).Google Scholar
19. Kalkhoran, N.M., Namavar, F., and Maruska, H.P., Mat. Res Soc. Symp. Proc., Vol 256, (1992).Google Scholar
20. Richter, A., Lang, W., Steiner, P., Kozlowski, F., Sandmaier, H., Mat. Res Soc. Symp. Proc., Vol 256,(1992).Google Scholar
21. Koshida, N. and Koyama, H., Mat. Res Soc. Symp. Proc., Vol. 256, (1992).Google Scholar
22. Maruska, H.P., Namavar, F., and Kalkhoran, N.M., Appl. Phys. Lett. 61, 1338 (1992)CrossRefGoogle Scholar