Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T06:30:44.593Z Has data issue: false hasContentIssue false

Optimized Hot-forming of an Intermetallic Multi-phase γ-TiAl Based Alloy

Published online by Cambridge University Press:  29 November 2012

Andrea Gaitzenauer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben, Austria
Martin Müller
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben, Austria
Helmut Clemens
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben, Austria
Patrick Voigt
Affiliation:
Titanium Solutions GmbH, D-28195 Bremen, Germany
Robert Hempel
Affiliation:
Titanium Solutions GmbH, D-28195 Bremen, Germany
Svea Mayer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben, Austria
Get access

Abstract

A robust processing route at low cost is an essential requirement for high-temperature materials used in automotive engines. Because of their excellent high-temperature properties, their low density, high elastic modulus as well as high specific strength, intermetallic γ-TiAl based alloys are potential candidates for application in advanced automotive turbochargers. So-called 3rd generation alloys, such as TNM™ alloys with a nominal composition of Ti-43.5Al-4Nb-1Mo-0.1B (in at%), are multi-phase alloys consisting of γ-TiAl, α2-Ti3Al and a low volume fraction of βo-TiAl phase. In this paper a novel hot-processing route, which is a combination of a one-shot hot-forging step and a controlled cooling treatment, leads to mechanical properties required for turbocharger turbine wheels. The observed strength can be attributed to the small lamellar spacing within the α2/γ colonies of the nearly lamellar microstructure. In order to analyze the microstructure and the prevailing phase fractions microscopic examinations and X-ray diffraction measurements were conducted. The mechanical properties were determined by hardness measurements as well as tensile and creep tests. The evolution of the microstructure during the hot-forming process is described and its relation to the obtained mechanical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tetsui, T., Advanced Engineering Materials 3, 307 (2001).10.1002/1527-2648(200105)3:5<307::AID-ADEM307>3.0.CO;2-33.0.CO;2-3>CrossRef3.0.CO;2-3>Google Scholar
Baur, H., Wortberg, D.B. and Clemens, H., in Gamma Titanium Aluminides 2003, edited by Kim, Y.-W., Dimiduk, D. M. and Loretto, M. H., (TMS, Warrendale, PA, 2003), pp. 23–31.Google Scholar
Clemens, H., Schloffer, M., Schwaighofer, E., Werner, R., Gaitzenauer, A., Rashkova, B., Schmoelzer, T., Pippan, R., and Mayer, S., these proceedings.Google Scholar
Clemens, H. and Mayer, S., Advanced Engineering Materials, DOI: 10.10002/adem.201200231.10.10002/adem.201200231CrossRefGoogle Scholar
Tetsui, T., in Gamma Titanium Aluminides 1999, edited by Kim, Y.-W., Dimiduk, D. M., Loretto, M. H., (TMS, Warrendale, PA, 1999), pp. 1523.Google Scholar
Noda, T., Intermetallics 6, 709 (1998).10.1016/S0966-9795(98)00060-0CrossRefGoogle Scholar
Tetsui, T., Intermetallics 9, 253 (2001).10.1016/S0966-9795(00)00129-1CrossRefGoogle Scholar
Gaitzenauer, A., Müller, M., Clemens, H., Voigt, P., Hempel, R., and Mayer, S., Berg- und Hüttenmännische Monatshefte 8-9, 319 (2012).10.1007/s00501-012-0024-9CrossRefGoogle Scholar
Kremmer, S., Chladil, H., Clemens, H., Otto, A., and Güther, V., in Ti-2007 Science and Technology, (JIM, Sendai, Japan, 2008) pp. 989992.Google Scholar
Wallgram, W., Schmoelzer, T., Cha, L., Das, G., Güther, V., and Clemens, H., International Journal of Materials Research 100, 1021 (2009).10.3139/146.110154CrossRefGoogle Scholar
Clemens, H., Wallgram, W., Kremmer, S., Güther, V., Otto, A., and Bartels, A., Advanced Engineering Materials 10, 707 (2008).CrossRefGoogle Scholar
Appel, F., Paul, J.D.H. and Oehring, M., “Gamma Titanium Aluminides Alloys- Science and Technology”, (WILEY-VCH Verlag, Weinheim, 2011).CrossRefGoogle Scholar
Schloffer, M., Schmoelzer, T., Mayer, S., Schwaighofer, E., Hawranek, G., Schimansky, F.-P., Pyczak, F., and Clemens, H., Practical Metallography 48, 594 (2011).10.3139/147.110138CrossRefGoogle Scholar
Cha, L., Clemens, H. and Dehm, G., International Journal of Materials Research 102, 703 (2011).10.3139/146.110526CrossRefGoogle Scholar
Watson, I.J., Liss, K.-D., Clemens, H., Wallgram, W., Schmoelzer, T., Hansen, T. C., and Reid, M., Advanced Engineering Materials 11, 932 (2009).10.1002/adem.200900169CrossRefGoogle Scholar
Schloffer, M., Leitner, T., Clemens, H., Mayer, S., and Pippan, R., Intermetallics, in preparation.Google Scholar
Cao, G., Fu, L., Lin, J., Zhang, Y., and Chen, C., Intermetallics 8, 647 (2000).10.1016/S0966-9795(99)00128-4CrossRefGoogle Scholar
Appel, F. and Wagner, R., Materials Science and Engineering: R: Reports 22, 187 (1998).CrossRefGoogle Scholar
Chatterjee, A., Clemens, H., Mecking, H., Dehm, G., and Arzt, E., International Journal of Materials Research (formerly Zeitschrift für Metallkunde) 92, 1000 (2001).Google Scholar
Simas, P., Schmoelzer, T., , M.L., Clemens, H., and San Juan, J., in Materials Research Society Symposium Proceedings 2011, edited by Palm, M., Bewlay, B. P., Kumar, K. S., and Yoshimi, K. (MRS, Warrendale, PA, 2011), pp. 139144.Google Scholar
Wang, J.G. and Nieh, T.G., Intermetallics 8, 737 (2000).10.1016/S0966-9795(00)00009-1CrossRefGoogle Scholar