Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T07:27:38.193Z Has data issue: true hasContentIssue false

Opto-electronic Simulation of GaN Nanowire Lasers

Published online by Cambridge University Press:  01 February 2011

Liang Chen
Affiliation:
liangc@cmu.edu, RSoft Design Group, Inc., 400 Executive Blvd., Ossining, NY, 10562, United States
Elias Towe
Affiliation:
towe@cmu.edu
Get access

Abstract

A self-consistent, coupled opto-electronic simulation for studying GaN nanowire lasers is presented. The model solves, simultaneously and self-consistently, the carrier transport equations and the photon rate equations. The basic physical model takes into account both bulk and surface dark recombinations, stimulated emission, the anisotropic optical gain typical of the Wurtzite GaN structure, the modified spontaneous emission, and its coupling into the lasing modes by microcavity effects. The model further incorporates band gap shrinkage effects due to band renormalization and the effects of multiple lateral and longitudinal lasing and non-lasing optical modes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Law, M., Goldberger, J., and Yang, P. D., Annu. Rev. Mater. Res. 34, 83 (2004).CrossRefGoogle Scholar
2 Cui, Y., Duan, X., Hu, J., and Lieber, C.M., J. Phys. Chem. B 104, 5213 (2000).CrossRefGoogle Scholar
3 Huang, Y., Duan, X., Cui, Y., Lauhon, L., Kim, K., and Lieber, C. M., Science 294, 1313 (2001).CrossRefGoogle Scholar
4 Cui, Y. and Lieber, C.M., Science 291, 851 (2001).CrossRefGoogle Scholar
5 Duan, X., Huang, Y., Cui, Y., Wang, J., and Lieber, C.M., Nature 409, 66 (2001).CrossRefGoogle Scholar
6 Johnson, J. C., Yan, H., Schaller, R. D., Haber, L. H., Saykally, R. J., and Yang, P. D., J. Phys. Chem. B, 11387 (2001).CrossRefGoogle Scholar
7 Johnson, J. C., Choi, H. J., Knutsen, K. P., Schaller, R. D., Yang, P. D., and Saykally, R. J., Nat. Mater. 1, 106 (2002).CrossRefGoogle Scholar
8 Duan, X., Huang, Y., Agarval, R., and Lieber, C. M., Nature 421, 241 (2003).CrossRefGoogle Scholar
9 Huang, M. H., Mao, S., Feick, H., Yan, H. Q., Wu, Y. Y., kind, H., Weber, E., Russo, R., and Yang, P. D., Science 292, 1897 (2001).CrossRefGoogle Scholar
10 Law, M., Sirbuly, D. J., Johnson, J. C., Goldberger, J., Saykally, R. J., and Yang, P. D., Science 305, 1269 (2004).CrossRefGoogle Scholar
11 Cui, Y., Wei, Q., Park, H., and Lieber, C.M., Science 293, 1289 (2001).CrossRefGoogle Scholar
12 Hahm, J. and Lieber, C.M., Nano Lett. 4, 5154 (2004).CrossRefGoogle Scholar
13 Purcell, E. M., Phys. Rev., vol. 69, pp.681 (1946).CrossRefGoogle Scholar
14 Zory, Peter S. Jr., Eds., Quantum well lasers, Academic Press, Boston (1993).Google Scholar
15 Maslov, A. V. and Ning, C. Z., Appl. Phys. Lett. 83, 1237 (2003).CrossRefGoogle Scholar
16 Maslov, A. V. and Ning, C. Z., IEEE J. Quan. Elect. 40, 1389 (2004).CrossRefGoogle Scholar
17 Chuang, S. L. and Chang, C. S., Phys. Rev. B 54, 2491 (1996).CrossRefGoogle Scholar
18 Yeo, Y. C., Chong, T. C., and Li, M. F., J. Appl. Phys. 83, 1429 (1998).CrossRefGoogle Scholar