Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T21:48:37.441Z Has data issue: false hasContentIssue false

Organic additives as antimicrobial agents in thermoplastics compounds

Published online by Cambridge University Press:  14 April 2016

Daiane Tomacheski
Affiliation:
Programa de Pós Graduação em Minas Metalurgia e Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS, Brazil. Softer Brasil Compostos Termoplásticos LTDA, Campo Bom/RS, Brazil.
Michele Pittol
Affiliation:
Universidade do Vale do Rio dos Sinos, São Leopoldo/RS, Brazil. Softer Brasil Compostos Termoplásticos LTDA, Campo Bom/RS, Brazil.
Vanda F. Ribeiro
Affiliation:
Softer Brasil Compostos Termoplásticos LTDA, Campo Bom/RS, Brazil.
Ruth M. C. Santana
Affiliation:
Programa de Pós Graduação em Minas Metalurgia e Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS, Brazil.
Get access

Abstract

Development of polymers with antimicrobial characteristics can avoid deterioration and assist in containing spread of pathogens harmful to human health. This study aimed to compare the antimicrobial and mechanical properties of polymeric matrices containing organic antimicrobial additives. Silver organomodified bentonite (Ag_bentonite) and organochlorine molecule in a masterbatch based polyethylene (Cl_PE) were tested in proportion of 2% in a thermoplastic elastomeric formulation. The polymeric matrices were prepared by melt mixing and evaluated in tensile and antimicrobial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. The additives were characterized by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The nanoscale of Ag_bentonite was verified by SEM. TGA assay showed that Cl_PE is more sensitive to heat than Ag_bentonite. As a result of this lower thermal stability, the addition of Cl_PE reduced the tensile properties of the compound. The sample with Cl_PE was effective against both bacterial strains, reducing the populations of S. aureus and E. coli in 99 and 96%, respectively. The addition of Ag_bentonite did not affect the tensile strength and decreased in 97 and 40% S. aureus and E. coli populations, respectively. The results indicate that the use of organic additives is promissory, but further modifications in processing must be necessary.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel-Aziz, S.M. and Aeron, A., SAJ Biotechnology. 1, 1 (2014)Google Scholar
Ahmed, N. A. A. M., “Bacterial Resistance and Challenges of Biocide Plastics”, Antimicrobial Polymers, ed. Lagarón, J. M., Ócio, M. J. and López-Rubio, A. (John Wiley & Sons, 2012) pp. 2349.Google Scholar
Nichols, D., “Biocides in Plastics” (Rapra Review Reports, 2004).Google Scholar
Radheshkumar, C. and Münstedt, H., Mater. Lett. 59, 1949 (2005).10.1016/j.matlet.2005.02.033CrossRefGoogle Scholar
Sedlarik, V., “Antimicrobial Modifications of Polymers”, Biodegradation - Life of Science, ed. Chamy, R. and Rosenkranz, F. (InTech, 2013) pp. 187204.Google Scholar
NanoBioMatters Industries, Additives for Polymers, September, 4, 2011.Google Scholar
Kamena, K., “Nanoclays and Their Emerging Markets,” Functional Fillers for Plastics, ed. Xanthos, M. (WILEY-VCH Verlag GmbH & Co. KGaA, 2010) pp. 177187.10.1002/9783527629848.ch9CrossRefGoogle Scholar
Swathy, J. R., Sankar, M. U., Chaudhary, A., Aigal, S., Anshup, and Pradeep, T., Scientific Reports. 4, 7161 (2014)10.1038/srep07161CrossRefGoogle Scholar
Pavlidou, S. and Papaspyrides, C.D., Prog. Polym. Sci. 33, 1119 (2008).10.1016/j.progpolymsci.2008.07.008CrossRefGoogle Scholar
Celebioglu, A., Umu, O. C. O., Tekinay, T., Uyar, T., Colloids Surf., B. 116, 612 (2014).10.1016/j.colsurfb.2013.10.029CrossRefGoogle Scholar
Syed, M. A., Akhtar, S., Siddaramaiah, , Syed, A. A., J. Appl. Polym. Sci. 119, 1889 (2011).10.1002/app.32905CrossRefGoogle Scholar
Liu, C., Yu, J., Sun, X., Zhang, J., and He, J., Polym. Degrad. Stab. 8, 197 (2003).10.1016/S0141-3910(03)00089-2CrossRefGoogle Scholar
Teymouri, Y. and Nazockdast, H., J. Mater. Sci. 46, 6642 (2011).10.1007/s10853-011-5616-3CrossRefGoogle Scholar
Kim, J., Pitts, B., Stewart, P. S., Camper, A., and Yoon, J., Antimicrob. Agents. Chemother, 52, 1446 (2008).10.1128/AAC.00054-07CrossRefGoogle Scholar
Kawahara, K., Tsuruda, K., Morishita, M., Uhida, M.. Dent Mater. 16, 452455 (2000).10.1016/S0109-5641(00)00050-6CrossRefGoogle Scholar
Nikaido, H.. Clin. Infect. Dis. 27, 3241 (1998).10.1086/514920CrossRefGoogle Scholar