Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T14:19:29.665Z Has data issue: false hasContentIssue false

Organic-Inorganic Hybrid Particles by Dendrimer Nanotemplating

Published online by Cambridge University Press:  01 February 2011

Franziska Gröhn
Affiliation:
Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Barry J. Bauer
Affiliation:
Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Eric J. Amis
Affiliation:
Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

Poly (amidoamine) (PAMAM) dendrimers are used to create organic-inorganic hybrid colloids in aqueous solution. The formation of gold colloids upon reduction of a gold salt precursor serves as a model reaction to study the influence of reaction conditions and dendrimer generation on the resulting nanostructures. The hybrid particles were characterized by transmission electron microscopy (TEM), small angle neutron scattering (SANS), and small angle x-ray scattering (SAXS). A transition is found from “colloid stabilization” by low molecular mass molecules to “polymer nanotemplating” with increasing dendrimer generation, i.e, increasing molecular mass but retaining the chemical nature of the stabilizing species.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Antonietti, M.; Göltner, C.; Angew. Chem Int. Eng. Ed. 1997, 36, 910.Google Scholar
[2] Jansen, J.F.G.A.; de Brabander-van den Berg, E.E.M.; Meijer, E.W.; Science 1994, 266, 1226.Google Scholar
[3] Jansen, J.F.G.A.; Meijer, E.W.; J. Am. Chem. Soc. 1995, 117, 4417.Google Scholar
[4] Zhao, M.; Sun, L.; Crooks, R.M.; J. Am. Chem. Soc. 1998, 120, 4877.Google Scholar
[5] Sooklal, K.; Hanus, L.H.; Advan. Mater. 1998, 10, 1083.Google Scholar
[6] Balogh, L.; Tomalia, D.A.; J. Am. Chem. Soc. 1998, 120, 7355.Google Scholar
[7] Beck Tan, N.C.; Balogh, L.; Trevino, S.F.; Polyme. 1999, 40, 2537.Google Scholar
[8] Zhao, M.; Crooks, R.M.; Adv. Mat. 1999, 11, 217.Google Scholar
[9] Garcia, M.E.; Baker, L.A.; Crooks, R.M.; Anal. Chem. 1999, 71, 256.Google Scholar
[10] Prosa, T.J.; Bauer, B.J.; Amis, E.J.; Tomalia, D.A.; Scherrenberg, R.; J. Polym. Sci. 1997, 35, 2913.Google Scholar
[11] Antonietti, M.; Gröhn, F.; Hartmann, J.; Bronstein, L.; Angew. Chem Int. Eng. Ed. 1997, 36, 2080.Google Scholar
[12] Certain commercial materials and equipment are identified in this article in order to specify adequately the experimental procedure. In no case does such identification imply recommendation by the National Institute of Standards and Technology, nor does it imply that the material or equipment identified is necessarily the best available for this purpose.Google Scholar
[13] Glinka, C.; Barker, J.G., Hammouda, B.; Krueger, S.; Moyer, J.J.; Orts, W.J.; J. Appl. Cryst. 1998, 31, 430.Google Scholar
[14] Hsiau, B.S.; Chu, B.; Yeh, F.; NSLS Newsletter 1997, July1.Google Scholar
[15] Glatter, O.; Acta Phys. Austriaca 1977, 47, 83.Google Scholar
[16] Glatter, O.; J. Appl. Cryst. 1977, 10, 415.Google Scholar
[17] Glatter, O.; J. Appl. Cryst. 1980, 13, 7 and 577.Google Scholar
[18] Error bars are the measured standard deviation in I (q)Google Scholar
[19] The relative standard deviation in the SAXS intensity values in the range 0.2 nm-1 < q < 1.6 nm-1 is less than 3 %. At higher wavevectors, the relative standard deviation increases with q to a maximum value of 7 %.Google Scholar
[20] The relative standard deviation in the P (r) values is less than 3 %.Google Scholar