Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T03:04:04.852Z Has data issue: false hasContentIssue false

Organic/Inorganic Langmuir-Blodgeti Films Based on Metal Phosphonates

Published online by Cambridge University Press:  10 February 2011

Daniel R. Talham
Affiliation:
Department of Chemistry, University of Florida, Gainesville, FL 32611-7200
Gail E. Fanucci
Affiliation:
Department of Chemistry, University of Florida, Gainesville, FL 32611-7200
Melissa A. Petruska
Affiliation:
Department of Chemistry, University of Florida, Gainesville, FL 32611-7200
Candace T. Seip
Affiliation:
Department of Chemistry, University of Florida, Gainesville, FL 32611-7200
Get access

Abstract

Langmuir-Blodgett (LB) bilayers of organophosphonic acids can be prepared where the phosphonic acid headgroups bind metal ions to form the same layered extended-solid structures present in solid-state metal phosphonates. The inorganic extended-solid network enhances the stability of the LB films, but can also be designed to introduce physical properties, such as magnetism, that are typical of the inorganic solid-state. By preparing films based on functionalized organophosphonic acids, the metal phosphonate approach can be used to produce “dualnetwork” LB films, where both the organic and inorganic networks add function to the thin film assembly. To begin to understand the design constraints associated with dual-network metal phosphonate films, LB bilayers of a phosphonic acidderivatized azobenzene amphiphile are formed with Cd2+ and La3+ and the structures are compared to octadecylphosphonate LB films prepared with the same metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Roberts, G. G., Langmuir-Blodgett Films (Plenum Press, New York, 1990).10.1007/978-1-4899-3716-2Google Scholar
2. Byrd, H., Pike, J. K., Talham, D. R., Chem. Mater. 5, 709715 (1993).Google Scholar
3. Byrd, H., Whipps, S., Pike, J. K., Ma, J., Nagler, S. E., Talham, D. R., J. Am. Chem. Soc. 116, 295301 (1994).10.1021/ja00080a034Google Scholar
4. Byrd, H., Pike, J. K., Talham, D. R., Thin Solid Films 242, 100105 (1994).Google Scholar
5. Seip, C. T., Byrd, H., Talham, D. R., Inorg. Chem. 35, 34793483 (1996).Google Scholar
6. Seip, C. T., Granroth, G. E., Meisel, M. W., Talham, D. R., J. Am. Chem. Soc. 119, 70847094 (1997).Google Scholar
7. Cunningham, D., Hennelly, P. J. D., Inorg. Chim. Acta 37, 95102 (1979).Google Scholar
8. Cao, G., Lee, H., Lynch, V. M., Mallouk, T. E., Inorg. Chem. 27, 27812785 (1988).Google Scholar
9. Ortiz-Avila, Y., Rudolf, P. R., Clearfield, A., Inorg. Chem. 28, 21372141 (1989).10.1021/ic00310a024Google Scholar
10. Cao, G., Lynch, V. M., Swinnea, J. S., Mallouk, T. E., Inorg. Chem. 29, 21122117 (1990).10.1021/ic00336a016Google Scholar
11. Carling, S. G., Day, P., Visser, D., Kremer, R. K., J. Solid State Chem. 106, 111–119 (1993).Google Scholar
12. Petruska, M. A., Talham, D. R., manuscript in preparation.Google Scholar
13. McRae, E. G., Kasha, M., in Physical Processes in Radiation Biology Augenstein, L., Mason, R., Rosenberg, B., Eds. (Academic Press, New York, 1964) pp. 2342.10.1016/B978-1-4831-9824-8.50007-4Google Scholar
14. Song, X., Perlstein, J., Whitten, D. G., J. Am. Chem. Soc. 119, 91449159 (1997).Google Scholar
15. Griffiths, J., Chem. Soc. Rev. 1, 481493 (1972).Google Scholar