Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T04:07:19.100Z Has data issue: false hasContentIssue false

The Origin and Implications of (111)-Textured Grains Obtained via Nucleation and Growth of Solids in Pulsed-Laser-Quenched Al Films on SiO2

Published online by Cambridge University Press:  26 February 2011

J. B. Choi
Affiliation:
jaebeom.choi@samsung.comColumbia UniversityProgram in Materials Science, Applied Physics and Applied MathematicsNew York NY 10027United States
Min H. Choi
Affiliation:
mc2499@columbia.edu, Columbia University, Program in Materials Science, Applied Physics and Applied Mathematics, New York, NY, 10027, United States
U.-J. Chung
Affiliation:
uc2111@columbia.edu, Columbia University, Program in Materials Science, Applied Physics and Applied Mathematics, New York, NY, 10027, United States
A. B. Limanov
Affiliation:
abl24@columbia.edu, Columbia University, Program in Materials Science, Applied Physics and Applied Mathematics, New York, NY, 10027, United States
James S. Im
Affiliation:
ji12@columbia.edu, Columbia University, Program in Materials Science, Applied Physics and Applied Mathematics, New York, NY, 10027, United States
Get access

Abstract

We have investigated excimer laser irradiation of 2000-Å-thin as-deposited Al films on SiO2. Microstructural analysis of the irradiated films conducted with AFM and EBSD techniques reveals that there exists a wide energy density interval over which large equaxed grains with a strong (111) texture are obtained. Based on thermal, transformational, and microstructural considerations, we propose a heterogeneous nucleation model to account for the observed behaviors, and discuss the implication of the model on the phenomenon of heterogeneous nucleation of crystalline solids in condensed systems as regards the thermodynamic role played by the orientation of subcritical clusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stiffler, S.R., Thompson, M. O., Peercy, P. S., Phys. Rev. Lett. 60, 2519 (1988)Google Scholar
2. Eiumchotchawalit, T. and Im, J. S., Mater. Res. Soc. Symp. Proc. 321, 725 (1994)Google Scholar
3. Choi, J. B. and Im, J. S., to be submittedGoogle Scholar
4. Im, James S., Kim, H. J. and Thompson, M. O., Appl. Phys. Lett. 63, 1969 (1993)Google Scholar
5. Im, James S., Kim, H. J., Appl. Phys. Lett. 64, 2303 (1994)Google Scholar
6. Swalin, Richard A., Thermodynamics of solids, 2nd ed., (John Wiley & Sons, 1972), p249 Google Scholar
7. Kim, H. J. and Im, J. S., Mater. Res. Soc. Symp. Proc. 397, 401 (1996)Google Scholar
8. Jakkaraju, R., Dobson, C. D. and Greer, A. L., Mater. Res. Soc. Symp. Proc. 594, 111 (2000)Google Scholar
9. Thompson, C. V., Annu. Rev. Mater. Sci. 20, 245 (1990)Google Scholar
10. Kim, H. J. and Im, J. S., Mater. Res. Soc. Symp. Proc. 321, 665 (1994)Google Scholar
11. Geis, M. W., Smith, H. I., Tsaur, B-Y., Fan, J. C. C., Silversmith, D. J., and Mountain, R. W., J. Electrochem. Soc. 129, 2812 (1982)Google Scholar
12. Nerding, M., Dassow, R., Christiansen, S., Köhler, J. R., Krinke, J., Werner, J. H., and Strunk, H. P., J. Appl. Phys. 91, 4125 (2002)Google Scholar
13. Voutsas, A. T., Limanov, A. and Im, J. S., J Appl. Phys. 94, 7445 (2003)Google Scholar
14. Hayzelden, C. and Batstone, J. L., J. Appl. Phys. 73, 8279 (1993)Google Scholar
15. Pound, G. M. and Lamer, V. K., J. Am. Chem. Soc. 74, 2323 (1952)Google Scholar
16. Perepezko, J. H., Mater. Sci. Eng. A226–228, 374 (1997)Google Scholar
17. Taylor, J. E. and Cahn, J. W., J. Electron. Mater. 17, 443 (1988)Google Scholar
18. Li, D. Y. and Szpunar, J. A., Scripta Metall. Mater. 28, 1377 (1993)Google Scholar
19. Christian, J. W., Theory of Transformations in Metals and Alloys (Pergamon, New York, 1975), Chapter 10Google Scholar