Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:44:54.668Z Has data issue: false hasContentIssue false

Origin of Leakage Current of YMnO3 Thin Films Prepared by the Sol-Gel Method

Published online by Cambridge University Press:  10 February 2011

Hiroya Kitahata
Affiliation:
Department of Applied Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599–8531, Japan
Kiyoharu Tadanaga
Affiliation:
Department of Applied Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599–8531, Japan
Tsutomu Minami
Affiliation:
Department of Applied Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599–8531, Japan
Norifumi Fujimura
Affiliation:
Department of Applied Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599–8531, Japan
Taichiro Ito
Affiliation:
Department of Applied Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599–8531, Japan
Get access

Abstract

The preparation conditions of YMnO3 thin films by the sol-gel method using yttrium alkoxide were optimized to decrease the leakage current of the films. The leakage current of the films was decreased due to the dense microstructure of the films. Moreover, the heat treatment in hydrogen atmosphere and the zirconium doping resulted in a further decrease of the leakage current. The heat treatment in hydrogen atmosphere and the zirconium doping were effective in the decrease of carriers originating in the valence fluctuation of the Mn ions in YMnO3

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Fujimura, N., Ishida, T., Yoshimura, T., and Ito, T., Appl. Phys. Lett., 69, 1011 (1996).Google Scholar
[2] Yoshimura, T., Fujimura, N., Ito, D., and Ito, T., J. Appi. Phys. to be appeared in April (2000) issue.Google Scholar
[3] Yi, W., Choe, J., Moon, C., Kwun, S., and Yoon, J., Appl. Phys. Lett., 73, 903905 (1998).Google Scholar
[4] Teowee, G., McCarthy, K. C., McCarty, F. S., Bukowski, T. J., Davis, D. G. Jr, and Uhlmann, D. R., J. Sol-Gel. Sci. Tech., 13, 889 (1998).Google Scholar
[5] Kamata, K., Nakajima, T., and Nakamura, T., Mat. Res. Bull., 14, 1007 (1979).Google Scholar
[6] Rao, G. V. Subba, Wanklyn, B. M., and Rao, C. N. R., J. Phys. Chem. Solids, 32, 345 (1971).Google Scholar
[7] Moure, C., Fernandez, J. F., Villegas, M., and Duran, P., J. Euro. Ceram. Soc., 19, 131 (1999).Google Scholar
[8] Shimura, T., Fujimura, N., Yamamori, S., Yoshimura, T., and Ito, T., Jpn. J. Appl. Phys., 37, 5280 (1998).Google Scholar
[9] Fujimura, N., Tanaka, H., Kitahata, H., Tadanaga, K., Yoshimura, T., Ito, T., and Minami, T., Jpn. J. Appl. Phys., 36, L1601 (1997).Google Scholar
[10] Kitahata, H., Tadanaga, K., Minami, T., Fujimura, N., and Ito, T., J. Am. Ceram. Soc., 81, 1357 (1998).Google Scholar
[11] Tadanaga, K., Kitahata, H., Minami, T., Fujimura, N., and Ito, T., J. Sol-Gel Sci. Tech., 13, 903 (1998).Google Scholar
[12] Kitahata, H., Tadanaga, K., Minami, T., Fujimura, N., and Ito, T., Appl. Phys. Lett., 75, 719 (1999).Google Scholar
[13] Kitahata, H., Tadanaga, K., Minami, T., Fujimura, N., and Ito, T., accepted for publication in J. Sol-Gel Sci. Tech.Google Scholar
[14] Kitahata, H., Tadanaga, K., Minami, T., Fujimura, N., and Ito, T., Jpn. J. Appl. Phys., 38, 5448 (1999).Google Scholar
[15] Bhattacharya, P., Park, K. H., and Nishioka, Y., Jpn. J. Appl. Phys., 33, 5231 (1994).Google Scholar
[16] Cho, H. J., Jo, W., and Noh, T. W., Appl. Phys. Lett., 65, 1525 (1994).Google Scholar
[17] In, T. G., Baik, S., and Kim, S., J. Mater. Res., 13, 990 (1998).Google Scholar