Published online by Cambridge University Press: 15 February 2011
This paper discusses experimental techniques and modelling tools used to characterize energetic solids subjected to dynamic deformation and shock. Critical experiments have been designed to study shock response and impact sensitivity of energetic materials. For example, a simplified two dimensional experiment has been developed to study the critical phenomena involved in delayed detonation reactions (XDT). In addition, wedge tests are used to obtain equation-of-state data. Coupled with hydrocodes, these experiments give us an in-depth understanding of the response of energetic materials subjected to shock loading. A coupled methodology using both experimental and modelling tools is presented. Consisting of three parts, it addresses all possible responses to fragment impact. The three parts are: (1) Fragment impact modelling (hydrocodes and empirically based codes); (2) Experiments to obtain accurate data for predicting prompt detonation; and (3) Tests with planar rocket motor models to explore mechanisms related to bum reaction thresholds and degree of violence. This methodology is currently being used in weapon design and munitions hazard assessments.