Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T09:56:31.663Z Has data issue: false hasContentIssue false

Overview of the French research on the evolution of spent fuel rod after discharge from the reactor

Published online by Cambridge University Press:  15 February 2011

C. Ferry
Affiliation:
CEA-Saclay, Nuclear Energy Division, 91191 Gif-sur-Yvette cedex, France
C. Cappelaere
Affiliation:
CEA-Saclay, Nuclear Energy Division, 91191 Gif-sur-Yvette cedex, France
C. Jegou
Affiliation:
CEA-Marcoule, Nuclear Energy Division, BP 17171, 30207 Bagnols sur Ceze, France
J.P. Piron
Affiliation:
CEA-Cadarache, Nuclear Energy Division, 13108 Saint-Paul lez Durance cedex, France
M. Firon
Affiliation:
CEA-Saclay, Nuclear Energy Division, 91191 Gif-sur-Yvette cedex, France
A. Ambard
Affiliation:
EDF, R&D division, les Renardieres, F-77818 Moret-sur-Loing Cedex, France
Get access

Abstract

Since 2006, French research on spent fuel has focused on the main issues related to transport and extended in-pool storage of spent fuel assembly. Studies on creep behaviour of irradiated cladding have resulted in a new creep model which is valid over a wide domain of temperature, internal pressure and time. Under nominal conditions, no evolution of the spent fuel rod is expected during in-pool storage. In case of defective fuel rods in the storage pool, the consequences of fuel alteration on the initial defect of the cladding depend on the matrix alteration rate and nature of the secondary phases formed. Considering the optional scenario of direct disposal, the long-term behaviour of the spent fuel is investigated focusing on helium consequences before water contact on the one hand and on the influence of repository conditions on matrix alteration on the other hand. The aim of the on-going studies is to improve the safety margins initially introduced in the radionuclide source term models.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Johnson, L., Ferry, C., Poinssot, C., Lovera, P., J. Nucl. Mat. 346, 5665 (2005)Google Scholar
2 Poinssot, C., Ferry, C., Lovera, P., Jegou, C., Gras, J.M., J. Nucl. Mat. 346, 6677 (2005)Google Scholar
3 Ferrry, C., Poinssot, C., Broudic, V., Cappelaere, C., Desgranges, L., Garcia, P., Jegou, C., Lovera, P., Marimbeau, P., Piron, J.P., Poulesquen, A., Roudil, D., Gras, J.M., Bouffioux, P.. Synthesis on the spent fuel long term evolution, CEA-R-6084, 2005.Google Scholar
4 Limon, R., Lehmann, S., J. Nucl. Mat. 335, 322334 (2004).Google Scholar
5 O'Connel, W., Clad degradation-wet Unzipping, Attachment III. ANL-EBS-MD-000014 REV00, 2000.Google Scholar
6 Cunnane, J.C., Fortner, J.A., Finch, R.J., Mat. Res. Soc. Symp. Proc. 757, pp. 385392 (2003).Google Scholar
7 Jegou, C. Muzeau, C. B., Broudic, V., Peuget, S., Poulesquen, A., Roudil, D. and Bart, J.M., J. Nucl. Mat. 341, 6282 (2005).Google Scholar
8 Jegou, C., Muzeau, B., Broudic, V., Roudil, D., Deschanels, X., Radiochim. Acta 95, 513522 (2007).Google Scholar
9 Corbel, C., Sattonnay, G., Guilbert, S., Garrido, F., Barthe, M.F., Jegou, C., J. Nucl. Mat. 348, 117 (2006).Google Scholar
10 Sainte-Catherine, C., Boulch, D. Le, Carassou, S., Ramasubramanian, N., Lemaignan, C., J. of Testing and Evaluation, Vol.34, No.5, 373382 (2006)Google Scholar
11 Final report on the European project Spent Fuel Stability under repository conditions (ed. Poinssot, C.&Ferry, C.), CEA-R-6093, 2005.Google Scholar
12 Muzeau, B., Mecanismes d'alteration sous eau du combustible irradie de type UOX, CEA-R-6163, 2007.Google Scholar
13 Shoesmith, D.W. 2000, J. Nucl. Mat., 282, 131 (2000).Google Scholar
14 Mendes, E., Comportement des interfaces UO2/H2O de haute purete sous faisceau d'ions He2+ en milieu desaere, Thesis Universite Paris XI, 2005.Google Scholar
15 Ferry, C., Poinssot, C., Cappelaere, C., Desgranges, L., Jegou, C., Miserque, F., Piron, J.P., Roudil, D., Gras, J.M., J. Nucl. Mat. 352, 246253 (2006).Google Scholar
16 Yun, Y., Eriksson, O., Oppeneer, P.M., J. Nucl. Mat. 385, 510516 (2009).Google Scholar
17 Roudil, D., Deschanels, X., Trocellier, P., Jegou, C., Peuget, S., Bart, J.M., J. Nucl. Mat. 325, 148158 (2004).Google Scholar
18 Ronchi, C., Hiernaut, J.P., P., J., J. Nucl. Mat. 325, 112 (2004).Google Scholar
19 Pipon, Y., Raepsaet, C., Roudil, D. and Khodja, H., submitted to NIMB (2008).Google Scholar
20 Roudil, D. (private communication).Google Scholar
21 Ferry, C., Piron, J.P., Stout, R., Mat. Res. Symp. Proc. 985, pp.6570 (2007).Google Scholar
22 Ferry, C., Piron, J.P., Poulesquen, A., Poinssot, C., Mat. Res. Soc. Symp. Proc. 1107, pp.447454 (2008).Google Scholar
23 Brutzel, L. Van, Vincent-Aublant, E., J. Nucl. Mat. 377, 522527 (2008).Google Scholar